
EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 1

EDM EMM Scenario Part I: Service Enabling - How to
Implement eSOA-Compliant Services

Applies to:
MySAP ERP based upon SAP NetWeaver 2004 or higher, XI 3.0.

Summary
This tutorial is part I of a series that describes core concept of composite applications and how to
build them with NW04s by way of the EDM demo scenario, as demonstrated previously by the
SAP Platform Ecosystem Market Development Engineering team.
The document focuses on service-enabling in a MySAP ERP backend including the service
definition in the XI Integration Repository from a technical point of view.

Author: Mark Mauerwerk
Company: Axentiv AG
Created on: 24 August 2006

Author Bio
Mark Mauerwerk is currently working as Solution Architect of SAP Platform
Ecosystem primarily focused on developing early stage demos and technical due
diligence of SAP’s newest technologies. He is an expert in SAP NetWeaver
architecture (ABAP and JAVA) and senior consultant at axentiv AG, a German SAP
service partner and ISV enabling partner. He looks back on many years of
experience in development and consultancy both internally at SAP as well as for

customers & partners in the field.

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 2

Table of Contents

Introduction .. 3

Overview .. 3
Scope ... 3

Implementation Steps in the Exchange Infrastructure (XI).. 4
Defining a Software Component Version in the System Landscape Directory (SLD) 4
Designing Interface Metadata in the Integration builder .. 5

Starting the Integration Builder... 5
Designing Custom Interface Objects.. 5
Design Message Types.. 5
Design the Service Interfaces and Their Operations Attributes ... 6
Optional Integration Scenarios ... 7
Importing/Exporting Interface Objects .. 8

Implementation Steps in MySAP ERP Backend.. 10
Generate ABAP Proxys.. 10
Implementing the Proxy Class ... 12
Publishing of Interfaces as Web Service ... 15

Testing and Debugging.. 17
Testing the Web Service.. 17
Testing the Proxy ... 17
Debug Your Interface ... 18
Tracking Message Flow on Backend Site.. 19

Related Content... 20
Appendix.. 21

Appendix A Implementation Code ... 21
MDEPRODUCT_DETAIL_QUERY_RESPONSE .. 21
MDEPRODUCT_LIST_QUERY_RESPONSE ... 22
MDEPURCHASE_ORDER_BY_IDQUERY ... 24
MDE2PURCHASE_ORDER_CREATE.. 27

Appendix B : Backend Configuration and material master data .. 31
Understanding the structure of the master data... 31
Master Data .. 31
Required values for BAPI call... 36

Copyright.. 37

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 3

Introduction

Overview
Service-oriented development allows you to design, build, and implement your own enterprise
services using the Enterprise Services Infrastructure.

It is a variant of the Enterprise Service Enabling scenario. This scenario variant focuses on
building new functionality by developing service interfaces and its implementation.

The end result will be a callable enterprise service ready for implementation in a client
application.

The graphic below provides a summary of the processes for service-oriented development
emphasizing the service enabling part:

Scope
In a nutshell, enterprise services are simply Web services that provide enterprise-level business
functionality.
Technically, in our case, they are a web services that access existing business functionality in a
MySAP ERP backend via ABAP proxies. Implementing those is the focus of this document.
Note: If you currently do not have access to an SAP ERP system, you may omit reading this
document for now and simply continue with the following document of this series (Part II Service
Enabling). Instead of implementing the respective Composition services through calls to ERP
services, you may replace the code using some dummy implementation that you can replace by
the correct ERP service calls whenever you get access to an ERP system at a later stage.
However, to understand the borderline of our implementation example here we have to consider
the term “enterprise-level business functionality” of our definition of enterprise service.
Enterprise Services may range from very simple lookup services (like finding a material list) to
more complex and composite services, but what they have in common is that they are highly
integrated in a process or application. Typically enterprise services are high-level components
that take more granular Web services and aggregate them into reusable elements with business
value.

Service
Abstraction

CAF Core

Service
Abstraction

CAF Core

UI Modeling

Visual Composer

UI Modeling

Visual Composer

Process
Modeling

CAF GP

Process
Modeling

CAF GP

Service
Definition

XI

Service
Definition

XI

Proxy
Generation

ERP / ABAP

Proxy
Generation

ERP / ABAP
Proxy
Implementation

ERP / ABAP

Proxy
Implementation

ERP / ABAP

Web Service
Generation

ERP / ABAP

Web Service
Generation

ERP / ABAP

Service
Implementation

CAF Core

Service
Implementation

CAF Core

EDM Service
Identification

J2EE Engine

EDM Service
Identification

J2EE Engine

Portal
Integration

Enterprise Portal

Portal
Integration

Enterprise Portal

Defining Software
Component Version in SLD
Defining Interface Metadata
in Integration Repository
Generate Proxy in ERP 5.0
Backend
Implement Proxy Class
Publishing of Enterprise
Services as Web Service

Section I: Service Enabling

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 4

For example, take the service Create Purchase Order. An elementary Web service Create
Purchase Order would simply insert a purchase order in the corresponding database. However, if
the stated goal is “create purchase order” in a broader business context the service has to
become a more far-reaching enterprise service that handles a process end-to-end, and therefore
has to trigger a number of follow-up actions, including:

• Check against production orders

• Trigger a corresponding billing process

• Update of inventory/warehouse information
If you step through this document you will find, that these aspects are unaccounted in our
scenario. We assume that you will use either SAP standard interfaces (then this document would
be obsolete), or you want to service enable your own business logic or simply follow-up with our
example.
In the last case you need to enter some material master data in the ERP backend. An example
how this could be done in a simple way is described in Appendix B.
You can browse the enterprise services, which have been already delivered by SAP at the ES
Workplace: https://www.sdn.sap.com/irj/sdn/developerareas/esa/esworkplace Start Browsing
now! or even test them by registering at https://www.sdn.sap.com/irj/sdn/esareg.

Implementation Steps in the Exchange Infrastructure (XI)
The message orientation of services is a key factor in increasing loose coupling and making
enterprise services and the systems built on them flexible and reusable. The message orientation
of services refers to the fact that services are able to act as traditional functions that are invoked
or can instead send and receive messages.
In the integration builder, you design the relevant interface objects:

• Data types

• Message types

• Service interfaces and their operation modes
At this stage, you are only working with metadata. The objects designed here will subsequently
be used to generate and implement services.
This work is done in the XI 3.0 Integration Repository or in future releases in the Enterprise
Service Repository (ESR). Objects in one ESR can be transported between different Enterprise
Services Repositories. This enables you to transport objects within a system landscape.

Defining a Software Component Version in the System Landscape Directory (SLD)
The service design metadata will need to be associated with a specific software component and
version.
To design a new software component and a software component version, you will need to use
the SAP System Landscape Directory (SLD) and then import the software component into the
Enterprise Services Repository. You can call the SLD from the SAP Exchange Infrastructure
(transaction SXMB_IFR). You can then add the new software component to the Integration
Repository: Choose Tools → Transfer from System Landscape Directory → Import Software
Component Versions.
Create your own product and software component version:

1. In SLD choose Software Catalogue
2. New product: Click New Product and type a vendor name, product name and product

version and save.
3. The wizard automatically asks you to create a new component version (the new product

version and vendor is already preselected by default): Type the component name and a
version number and save.

https://www.sdn.sap.com/irj/sdn/developerareas/esa/esworkplace
https://www.sdn.sap.com/irj/sdn/esareg

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 5

Your software component version has been created.

Designing Interface Metadata in the Integration builder

Starting the Integration Builder

1. Logon to the XI system.
2. Call transaction SXMB_IFR.
3. The tools menu is displayed in a Web browser window (You can also access this URL

directly via (http://<host>:<port>/rep).
4. Follow the link Integration Repository and log on.
5. An overview of software components and their versions is displayed.
6. Select a software component and version or import your new component version.
7. Expand the tree for the software component version to display the available namespaces

(may be empty in case of a newly creaed component version).
8. Select a namespace.

To add a new namespace to a software component version, open the context menu over the
software component version. Choose Open namespaces to display an overview of available
namespaces. Choose Edit, add a new namespace to the overview, then save and activate the
new namespace.
Expand the namespace, and then expand Interface Objects.
The nodes for data types, message types, and service interfaces are displayed if they have been
created. If the namespace has just been created, no nodes will be displayed.

Designing Custom Interface Objects

Design data types:
1. Expand the Data Types node.
2. From the context menu for the namespace, you can create new data types or copy

existing data types.
3. You can add simple (“elementary”) data types, for example “date”, “string” or “integer”.

You can combine simple data types to form complex data types. You can define
attributes for the data types, for example, occurrence, a value range, optional or
mandatory.

4. Activate the data types.

Design Message Types

A message type is a special data type that can be used as a parameter structure in a service
interface. You need to associate a message type with a data type.
Design the Message Types:

1. Expand the Message Types node.
2. From the context menu, you can create new message types or copy existing message

types.
3. Save and activate the message types.
4. The message types need to be activated in order to be used for proxy generation!

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 6

Design the Service Interfaces and Their Operations Attributes

The operational behaviour of an interface is defined by its communication parameters. In NW04s
you can only define one method per interface meaning one (in asynchronous case) or two (in
synchronous case) message types can be exchanged per interface. Additionally the attributes
inbound/outbound affects the role of the service.
Determining the direction of an interface:

• An outbound interface sends a request message and is used for the definition of a client
proxy.

• An inbound interface receives a request message and is used for the definition of a
server proxy.

Defining the mode of communication:
In the case of synchronous communication, a response message is expected from the receiver
after a request has been sent. Once the request message has been sent, no further messages
can be sent until the response to the request has arrived back at the sender system.
In asynchronous communication a (immediate) response is not expected. A sending process
can send multiple messages to a receiver in a bundle and then continue executing the process

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 7

In our example we use server side service provider with synchronous mode of communication.
(Vice versa, client proxies can be generated from “outbound” interfaces.)

The option “Abstract” cannot be used for operations from which you intend to generate a proxy.
Tasks:

1. Expand the Service interfaces node.
2. From the context menu, you can create new service interfaces or copy existing service

interfaces.
3. For the interface definition you need to define combinations of communication

parameters as described above.
4. Chosse the message type(s) which have to be exchanged on the interface.
5. Save and activate the service interfaces.

Optional: Choose the WSDL tab to display the complete description of the service interface in
XML. This description is used to generate and implement a service provider.
The design process in the Enterprise Service Repository is now complete.

Optional Integration Scenarios

As SAP XI covers the functionality of full blown EAI product there are many options to include
older R/3 systems as well as 3rd party applications via messaging in custom ESOA scenarios.
For such cases SAP XI also supports the connection of interfaces that cannot be imported to the
Integration Repository. There are two variants:
The message schema is contained in a WSDL, XSD, or DTD document and can be processed
by proxy generation functions. In this case, you use message interfaces as the counterpart to the
interface that cannot be imported.

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 8

The message schema cannot be imported or processed by proxy generation. In this case, you
use adapters on the sender and receiver side to enable communication.
1.) If your system supports proxy generation and the proxy generation functions can process
message schema, proceed as follows:
Import the WSDL, XSD, or DTD document to the Integration Repository as an external definition.
Create a message interface and reference the message(s) of the external definition by using the
input help. For external, you can use an abstract message interface since no proxies have to be
generated in this case.
Generate a proxy for your message interface. The interface that cannot be imported is already
available in the system and can exchange messages with the Integration Server by using the
respective adapter.

2.) Communication between Components that do not support Proxies
You can enter interface names in the Integration Builder manually. This enables you to connect
systems from which interfaces cannot be imported or whose message schema is not supported
by proxy generation. For technical reasons, it is only possible to import RFCs and IDocs for SAP
systems Release 4.0 or higher. However, the RFC and IDoc adapters can be implemented with
SAP systems Release 3.1l and higher. In this case you must enter the interface names manually.
For more information about IDoc and RFC interfaces Release 3.1l and higher, call the Interface
Repository at the Internet address ifr.sap.com.
The Adapter Engine supports the connection of external systems that are not necessarily
connected by means of an interface (for example, the file adapter). When configuring the
inbound adapter, specify instead the ID of the logical sender and receiver by using the respective
business system, a namespace, and any interface name. If a mapping is required, you need an
interface to be able to specify your mapping program later in the configuration using an interface
mapping. For external systems, you can use an abstract message interface since no proxies are
to be generated in this case.
In the case of interfaces that have not been imported, if you have entered the repository
namespace and the interface name correctly during mapping and routing, the Integration Server
recognizes the corresponding communication parties (the namespace does not then necessarily
have to be available in the Integration Builder).
Since scenarios referred above are not within the scope of this document, please refer to
corresponding documentation for application integration scenarios on help.sap.com.

Importing/Exporting Interface Objects

To copy design objects from one Integration Repository to another Integration Repository the
software component version must be the same in the source and target repository. In this way,
you provide the design objects of the Integration Repository using export files. SAP Note 836200
gives a brief description of how customers can import process integration content to their
Integration Repository.
You have the following options for selecting the objects to be exported:

• All objects of a software component version. When you select this option, the Integration
Builder always includes the delete versions in the export.

• All objects of individual namespaces for a software component version.

• Individual objects of a software component version.

• Export of change lists

• Optionally you can also include deleted obejects.
You can only export active objects. If an object to be exported is not active, the Integration
Builder exports the last active version.

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 9

During the export, a packaged binary file is created in a directory defined on the repository server
(or directory server). To import this file to another Integration Repository (or Integration
Directory), you must manually copy it to an import directory (see below). You require the
appropriate authorizations to be able to access directories on the SAP Web Application Server.

Type Integration Repository

Export <systemdir>/xi/repository_server/export

Import <systemdir>/xi/repository_server/import

<systemdir> is the system directory of your server installation (e.g. /usr/sap/<SID>/sys/global/).
If you have only exported the objects of one namespace, the namespaces of the same software
component version are nevertheless visible in the target repository following the import.
However, these namespaces are empty because they could not be exported. SAP recommends
that you only export complete software component versions so as to avoid confusion.
Import/export design objects of the Integration repository can be performed by using “Tools
Import/Export Design Objects” or in case of export functionality by context menu directly from the
selected software component version or namespace from the navigation tree.
For transferring design objects within an Integration Repository to other software component
versions use Tools Release Transfer... on the design maintenance screen of the Integration
Builder and follow the wizard’s instructions.
For more details please refer to Transporting XI Objects at help.sap.com.

Enhancement of SAP standard services
You can enhance or modify existing SAP interface objects.
Note: This chapter is only for advanced users already familiar with XI. Those users are
recommended to refer to the “Guide for Customer Developments and Modifications in the
Integration Repository”.

Message interfaces can be defined using message types or external definitions. If message
interfaces reference message types, you can enhance them without modification by creating a
data type enhancement for the data type that is referenced in the message type. You must
create the data type enhancement in the customer software component in the customer
namespace. Using the customer namespace prevents naming conflicts between elements or
attributes of the enhancement and the names of the data type and other data type
enhancements that are also valid in the customer context for this data type (for example, partner
enhancements). Elements and attributes of enhancements are qualified with the namespace
prefix in XML instances of interfaces.

If you want to modify SAP interface objects at the customer, a „based-on“ relationship must be
defined between the customer software component and the SAP software component in the
SLD. The prerequisite for changing objects in the underlying software components is that the
objects Modifiable property is set in the customer software component version. To do this, open
the customer software component version and select the Objects are Modifiable checkbox under
Object attributes. You can then modify an SAP object as follows:

1. In the navigation tree of the customer software component, select the object to be
modified in the basis Objects subtree.

2. In the object editor, select change mode. The following message is displayed: Object is
defined in a subordinate software component version. Do you want to add the object to
the software component and modify it?

http://help.sap.com/saphelp_nw04s/helpdata/en/93/a3a74046033913e10000000a155106/frameset.htm

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 10

3. Choose Modify.mYou can edit the interface objects in the customer component, in other
words make modifications to interfaces, (fault) message types, or data types.

4. Activate the change list containing this object.
SAP upgrades do not overwrite the modified version of the object, but the system displays a
message that a conflict resolution is necessary.

Implementation Steps in MySAP ERP Backend
After completing the interface definition in the Integration Repository you have to generate or
adapt existing ABAP-proxies in the ERP system. Proxy generation converts non-language-
specific interface descriptions in WSDL into executable interfaces known as proxies.

Generate ABAP Proxys
ABAP proxy generation enables you to generate proxies to communicate by using the Web
service infrastructure.
The counterparts to inbound message interfaces in application systems are server proxies. They
are called to start a service that, in the synchronous case, returns a result. The proxy generation
functions generate an ABAP object interface (prefix II_) for an inbound message interface.
The counterparts to outbound message interfaces in application systems are client proxies. They
are called to send a message to an inbound interface. An outbound message interface is
mapped to an ABAP object class (prefix CO_).
Proxy generation in ABAP is a task for developers, just like creating programs or structures in the
ABAP Dictionary. Therefore, you require developer authorization for your user. Furthermore, we
recommend that you create customer objects in the system in the customer namespace (for
example, beginning with Z or with /.../). Developers can specify this prefix, together with the
package in which the objects are to be created, before proxy generation.
Using the customer namespace is particularly important for the append structures (in case of
data type enhancements of existing message types the corresponding proxy objects). Both the
append structure name and the field names in the append structure are qualified with the
customer prefix. This prevents potential naming conflicts when parallel enhancements are made
to the same data type by different partners or customers.
If you want to use objects from other namespaces (for example, from SAP) in your namespace,
then the objects must already exist. They are not regenerated or generated during proxy
generation.

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 11

You can generate the proxy objects by using the transaction SPROXY. To do this, you must first
navigate to the customer component and customer namespace in which your interface has been
designed. If you call the function (right click) for creating the proxy for your interface and all proxy

objects will be generated.

Once a proxy has been generated (see picture above) you have to regenerate the proxy after
each change of the corresponding interface objects in the integration repository.

Genrated proxy objects:

Interface Object in the Integration Repository Proxy Object in the System

Message interface (inbound or outbound) ABAP object interface. You must implement
this interface using an ABAP object class to
make this service available.

Message Type ABAP Dictionary structure

Fault message type

ABAP object exception class

Data type ABAP Dictionary structure(s)/
ABAP Dictionary data element

Data type enhancement ABAP Dictionary append structure

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 12

After proxy generation the following tabs are displayed:

Tab Meaning

Properties Generation attributes such as package, last changed by, and so on.
For inbound proxies, specify the name of the implementing class
here.

Name conflicts This tab is only displayed immediately after the proxy is generated. It
allows you to correct names that were truncated during generation,
or that needed to be changed because a collision occurred.

Generation A list of all the objects generated for an object

Structure This tab is similar to the Generation tab, except that here the objects
are sorted according to their use in a tree structure.
Example: Class CO_X
 ->Method MYMETHOD
 ->Importing OUTPUT

Documentation The system displays the documentation from the Integration
Repository for the outbound object.

Type mappings Even if a proxy was generated successfully, there are cases when
generation was only possible due to implicit acceptance (for
example, restrictions to the value range are checked by the
programmer). If such situations arose during generation, they are
listed in an application log.

When proxy objects are generated, the number of ABAP Dictionary objects, classes, and
interfaces created can lead to a considerable volume of translation. This translation is pointless,
however, since these proxy objects do not appear in user interfaces. You should therefore
ensure that proxy objects are separated at package level. Create a separate package for the
proxy objects and flag it as not relevant for translation.

Implementing the Proxy Class
When the proxy objects have been generated the application must simply implement the class
for the server proxy. Proxy generation automatically creates a class with an appropriate signature
and empty method. The name of this class is located on the tab page Properties. The application
can, however, also enter any class with a suitable signature.
The implementing class uses a method with one of the following naming convention, depending
on the type of communication:
In the case of synchronous interfaces, the method is called EXECUTE_SYNCHRONOUS
In the case of asynchronous interfaces, the method is called EXECUTE_ASYNCHRONOUS
You can either use forward navigation from the properties tab in transaction SPROXY or use
SE80 dialogues to edit the class in the class builder.

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 13

Implementing the interface call:
1. declare the required data types

* transaction controlling

 DATA:

 lt_return type bapirettab,

 lt_return_errors type bapirettab,

 lv_transaction_id type ARFCTID.

**general params and BAPI data

 DATA:

* BAPI input data

 lv_matnrlist_row type bapimatlst,

 lv_matnr_select type bapimatram ,

 ls_matnr_select type table of bapimatram,

 lv_plant_select type bapimatraw,

 ls_plant_select type table of bapimatraw,

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 14

* BAPI output data

 lv_matnrlist type table of bapimatlst,

 bapiret type bapirettab,

* XI data structures

 lv_outputlist type table of mdeproduct_list,

 lv_outputlist_row type mdeproduct_list

2. Preparing the BAPI call you have build up the query type for the material number

search input-PRODUCT_LIST_QUERY_RESPONSE-PRODUCT_SELECTION-matnr

 for '.*.'.

 if sy-subrc = 0.

 lv_matnr_select-option = 'CP'.

 else.

 lv_matnr_select-option = 'EQ'.

 endif.

 lv_matnr_select-matnr_low =

 input-PRODUCT_LIST_QUERY_RESPONSE-PRODUCT_SELECTION-matnr.

append lv_matnr_select to ls_matnr_select.

proceed accordingly for plant with lv_plant_select-option = 'EQ'

3. call the BAPI to read the material data

CALL FUNCTION 'BAPI_MATERIAL_GETLIST'

* EXPORTING

* MAXROWS =

 TABLES

 MATNRSELECTION = ls_matnr_select

* MATERIALSHORTDESCSEL =

* MANUFACTURERPARTNUMB =

 PLANTSELECTION = ls_plant_select

* STORAGELOCATIONSELECT =

* SALESORGANISATIONSELECTION =

* DISTRIBUTIONCHANNELSELECTION =

 MATNRLIST = lv_matnrlist

 RETURN = bapiret

 .

4. the returned table wrapped to the desired interface structure

 loop at lv_matnrlist into lv_matnrlist_row .

 lv_outputlist_row-PRODUCT = lv_matnrlist_row-MATERIAL.

 lv_outputlist_row-PRODUCT_DESC = lv_matnrlist_row-MATL_DESC.

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 15

 lv_outputlist_row-PRODUCT_EXT = lv_matnrlist_row-
MATERIAL_EXTERNAL.

 lv_outputlist_row-PRODUCT_GUID = lv_matnrlist_row-MATERIAL_GUID.

 lv_outputlist_row-PRODUCT_VER = lv_matnrlist_row-
MATERIAL_VERSION .

 append lv_outputlist_row to lv_outputlist.

 clear lv_outputlist_row.

 endloop .

5. and assigned to the methods output parameter.

 output-PRODUCT_LIST_RESPONSE-PRODUCT_LIST = lv_outputlist.

6. finally you have to check for errors:
**** Check errors

 CALL FUNCTION 'EPV_FILTER_MESSAGES'

 EXPORTING

 information = 'X'

 success = 'X'

 warning = 'X'

 return_in = lt_return

 IMPORTING

 return_out = lt_return_errors

 .

 if lines(lt_return_errors) > 0.

 call method cl_proxy_fault=>raise

 EXPORTING

 exception_class_name = 'CX_MDEEXCHANGE_FAULT_DATA'

 bapireturn_tab = lt_return.

 endif.

 CALL FUNCTION 'TRANSACTION_END'

 EXPORTING

 transaction_id = lv_transaction_id

You will find the implementation code for all proxies in Appendix A. However, before proceeding
it is recommended to enter the scenarios material master data and test the BAPI calls
accordingly (see Appendix B).

Publishing of Interfaces as Web Service
The Web Services toolset is integrated in the development environment. A wizard and other tools
enable you to publish the implemented proxy application as web service.
The Web Service Creation Wizard makes it possible to define a Web service in a few steps.
After proxy activation in transaction SPROXY you can directly start the web service wizard by
choosing the web service wizard push button (F5) or choose Menu Goto Web service Wizard.
Perform the steps indicated in the wizard:

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 16

Action Meaning

Create Virtual
Interface

The virtual interface maps the names for the operations and
parameters of the endpoint for the Web service.
Enter a name for the new virtual interface. Assign a short text and
choose an endpoint type. Choose the checkbox field Name
Mapping. The existing name of the endpoint is copied across. The
first letter of a name is written in upper case, all others are lower
case. Underscore characters are removed. To change the virtual
interface, use the Object Navigator (SE80).

Choose the endpoint This is the name of your generated ABAP interface and is offered
by default.

Create Web Service
definition

The features that can be assigned here to the Web service relate to
questions of security of data transfer and the type of
communication. Choose a predefined feature set from the profiles
available.
Profile Basic Auth SOAP:
Communication type: Stateless
Caller authentication: User and password
Profile Secure SOAP:
Communication type: Stateless
Authentication: Client certificate
Transferred data is encrypted using the Secure Socket Layer
protocol.

Release Web Service The service definition is created. Finally, you perform the release
for the SOAP runtime.
If you select Complete, the following objects are created in the
Object Navigator:
The virtual interface test
The Web service test
The address of the Web service is
default_host/sap/bc/srt/xip/sap/<name of endpoint>

To find the address of the Web service, use the transaction WSADMIN, which supports you to
administer web services.

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 17

Testing and Debugging
If you plan to implement custom enterprise services on the ERP system, we assume at this point
that you are familiar with the ABAP development process itself. So we consider web service level
and proxy level as entry point for testing and debugging.

Testing the Web Service
You can call a Web service homepage for any Web service displayed in the transaction
WSADMIN. The Web service homepage provides the following services to its user:

• Documentation on the Web service

• The option to display and download the WSDL document

• The ability to testing the Web service

Testing the Proxy
You can test your proxy implementation by choosing the Testing push button (F8).

Check for XML Editor to enable editing your test data.
Edit the payload in the xml editor.

Choose Execute(F8).
The response message will be displayed – choose Payload After Service to see the return
values.

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 18

If you need to debug, you can simply place a breakpoint in your code.

Debug Your Interface
If you need to debug your interface by calling it via http you have to activate the debugging as
following:

1. Log on with the user that is used to send the message to the application server where
the message is sent to.

2. Open the proxy class in SE24:
3. Choose Utilities Settings in the menu and activate the HTTP debugging for the user

you want to use for debugging in ABAP Editor HTTP Debugging:

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 19

4. Set the breakpoint via menu Utilities Breakpoints Set/Delete Choose ‘HTTP

breakpoint’ in the popup:

When you send the message the debugger will stop at the breakpoint you have set.
Another possibility to activate the HTTP debugging is to activate the debugging for a specific
user in transaction SICF. Select the path and choose via the menu: Edit Debugging
Activate debugging. In the popup you can set the user for debugging (needs to be the sending
user).
When you send the message via web service homepage the debugger will stop at your
breakpoint.

Tracking Message Flow on Backend Site
If you tested the proxy itself and the Web service on the backend successfully as well, you may
still encounter problems in the message flow between your JAVA and ABAP stack. For this you
can exactly trace your message flow on backend site.

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 20

Call transaction WSADMIN, switsch trace on Goto SOAP Runtime Settings and select the
settings as follows:

Call transaction SM59 and display trace via menu RFC Display Trace. If you choose full trace
all system messages including the SOAP messages of the request and response will be
displayed. The snippet below displays a SOAP response message and some INFO messages of
the ABAP SOAP runtime.
If errors in the SOAP runtime occur, these are also indicated in the system log (SM21).
Don’t forget to switch of full trace, if you finished your analysis.

Related Content
For most actions and technologies mentioned in this document there are already existing
particular documentations and How-to guides.
How-To-Guides for all referred SAP NetWeaver components are available at the SAP Service
Marketplace: SAP Service Marketplace http://service.sap.com/netweaver -> Media Library ->
How–To Guides -> <SAP NetWeaver component>
or using quick link: /nw-howtoguides
All installation guides of required SAP installations are available at the SAP Service Marketplace
using quick link: /instguidesnw04
SAP Service Marketplace: http://service.sap.com/netweaver -> Media Library -> Literature
Collaborative community for developers and integrators: http://www.sdn.sap.com
Enterprise Services Design Guide: http://www.sdn.sap.com Enterprise SOA Developer
Resources
SAP Exchange Infrastructure: Guide for Customer Developments and Modifications in the
Integration Repository: http://service.sap.com/xi Media Library Documentation

http://www.sdn.sap.com/
http://www.sdn.sap.com/
http://service.sap.com/xi

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 21

Appendix

Appendix A Implementation Code

MDEPRODUCT_DETAIL_QUERY_RESPONSE

method II_MDEPRODUCT_DETAIL_QUERY_RES~EXECUTE_SYNCHRONOUS.

*** **** INSERT IMPLEMENTATION HERE **** ***

data: material type MATNR,

 valuationarea type BWKEY,

 valuationtype type BWTAR_D,

 plant type WERKS_D.

data: mat_general_data type BAPIMATDOA,

 mat_valuation_data type BAPIMATDOBEW,

 ls_return type BAPIRETURN.

material = input-PRODUCT_DETAIL_QUERY-PRODUCT_IDCONTENT.

plant = input-PRODUCT_DETAIL_QUERY-PLANT.

CALL FUNCTION 'TRANSACTION_BEGIN'

* IMPORTING

* TRANSACTION_ID =

.

CALL FUNCTION 'BAPI_MATERIAL_GET_DETAIL'

 EXPORTING

 MATERIAL = material

 PLANT = plant

* VALUATIONAREA = valuationarea

* VALUATIONTYPE = valuationtype

 IMPORTING

 MATERIAL_GENERAL_DATA = mat_general_data

 RETURN = ls_return

* MATERIALPLANTDATA =

* MATERIALVALUATIONDATA = mat_valuation_data

 .

If mat_valuation_data-PRICE_CTRL = 'S'.

output-PRODUCT_DETAIL_QUERY_RESPONSE-PRODUCT_VALUATION_DATA-
PRODUCT_PRICE = mat_valuation_data-STD_PRICE.

Else.

output-PRODUCT_DETAIL_QUERY_RESPONSE-PRODUCT_VALUATION_DATA-
PRODUCT_PRICE = mat_valuation_data-MOVING_PR.

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 22

EndIf.

output-PRODUCT_DETAIL_QUERY_RESPONSE-PRODUCT_VALUATION_DATA-
PRODUCT_PRICE_UNIT = mat_valuation_data-PRICE_UNIT.

output-PRODUCT_DETAIL_QUERY_RESPONSE-PRODUCT_VALUATION_DATA-
PRODUCT_CURRENCY = mat_valuation_data-CURRENCY.

output-PRODUCT_DETAIL_QUERY_RESPONSE-PRODUCT_VALUATION_DATA-
PRODUCT_CURRENCY_ISO = mat_valuation_data-CURRENCY_ISO.

output-PRODUCT_DETAIL_QUERY_RESPONSE-PRODUCT_CLIENT_DATA-
PRODUCT_DESCRIPTION = mat_general_data-MATL_DESC.

output-PRODUCT_DETAIL_QUERY_RESPONSE-PRODUCT_CLIENT_DATA-
PRODUCT_TYPE = mat_general_data-MATL_TYPE.

output-PRODUCT_DETAIL_QUERY_RESPONSE-PRODUCT_CLIENT_DATA-
PRODUCT_INDUSTRY_SECTOR = mat_general_data-IND_SECTOR.

output-PRODUCT_DETAIL_QUERY_RESPONSE-PRODUCT_CLIENT_DATA-
PRODUCT_GROUP = mat_general_data-MATL_GROUP.

output-PRODUCT_DETAIL_QUERY_RESPONSE-PRODUCT_CLIENT_DATA-
PRODUCT_SIZE_DIMENSIONS = mat_general_data-SIZE_DIM.

output-PRODUCT_DETAIL_QUERY_RESPONSE-PRODUCT_CLIENT_DATA-
PRODUCT_NET_WEIGHT = mat_general_data-NET_WEIGHT.

*} REPLACE

endmethod.

MDEPRODUCT_LIST_QUERY_RESPONSE

method II_MDEPRODUCT_LIST_QUERY_RESPO~EXECUTE_SYNCHRONOUS.

* transaction controlling

 DATA:

 lt_return type bapirettab,

 lt_return_errors type bapirettab,

 lv_transaction_id type ARFCTID.

**general params and BAPI data

 DATA:

* BAPI input data

 lv_matnrlist_row type bapimatlst,

 lv_matnr_select type bapimatram ,

 ls_matnr_select type table of bapimatram,

 lv_plant_select type bapimatraw,

 ls_plant_select type table of bapimatraw,

* BAPI output data

 lv_matnrlist type table of bapimatlst,

 bapiret type bapirettab,

* XI data structures

 lv_outputlist type table of mdeproduct_list,

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 23

 lv_outputlist_row type mdeproduct_list

 .

 lv_matnr_select-sign = 'I' .

* Allow for material number search pattern 'pat*'

 search input-PRODUCT_LIST_QUERY_RESPONSE-PRODUCT_SELECTION-matnr

 for '.*.'.

 if sy-subrc = 0.

 lv_matnr_select-option = 'CP'.

 else.

 lv_matnr_select-option = 'EQ'.

 endif.

 lv_matnr_select-matnr_low =

 input-PRODUCT_LIST_QUERY_RESPONSE-PRODUCT_SELECTION-matnr.

 append lv_matnr_select to ls_matnr_select.

 lv_plant_select-sign = 'I'.

 lv_plant_select-option = 'EQ'.

 lv_plant_select-plant_low =

 input-PRODUCT_LIST_QUERY_RESPONSE-PRODUCT_PLANT_SELECTION-plant.

 append lv_plant_select to ls_plant_select.

 CALL FUNCTION 'TRANSACTION_BEGIN'

 IMPORTING

 TRANSACTION_ID = lv_transaction_id.

 .

 CALL FUNCTION 'BAPI_MATERIAL_GETLIST'

* EXPORTING

* MAXROWS =

 TABLES

 MATNRSELECTION = ls_matnr_select

* MATERIALSHORTDESCSEL =

* MANUFACTURERPARTNUMB =

 PLANTSELECTION = ls_plant_select

* STORAGELOCATIONSELECT =

* SALESORGANISATIONSELECTION =

* DISTRIBUTIONCHANNELSELECTION =

 MATNRLIST = lv_matnrlist

 RETURN = bapiret

 .

 loop at lv_matnrlist into lv_matnrlist_row .

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 24

 lv_outputlist_row-PRODUCT = lv_matnrlist_row-MATERIAL.

 lv_outputlist_row-PRODUCT_DESC = lv_matnrlist_row-MATL_DESC.

 lv_outputlist_row-PRODUCT_EXT = lv_matnrlist_row-
MATERIAL_EXTERNAL.

 lv_outputlist_row-PRODUCT_GUID = lv_matnrlist_row-MATERIAL_GUID.

 lv_outputlist_row-PRODUCT_VER = lv_matnrlist_row-
MATERIAL_VERSION .

 append lv_outputlist_row to lv_outputlist.

 clear lv_outputlist_row.

 endloop .

 output-PRODUCT_LIST_RESPONSE-PRODUCT_LIST = lv_outputlist.

**** Check errors

 CALL FUNCTION 'EPV_FILTER_MESSAGES'

 EXPORTING

 information = 'X'

 success = 'X'

 warning = 'X'

 return_in = lt_return

 IMPORTING

 return_out = lt_return_errors

 .

 if lines(lt_return_errors) > 0.

 call method cl_proxy_fault=>raise

 EXPORTING

 exception_class_name = 'CX_MDEEXCHANGE_FAULT_DATA'

 bapireturn_tab = lt_return.

 endif.

 CALL FUNCTION 'TRANSACTION_END'

 EXPORTING

 transaction_id = lv_transaction_id

 .

endmethod.

MDEPURCHASE_ORDER_BY_IDQUERY

method II_MDEPURCHASE_ORDER_BY_IDQUER~EXECUTE_SYNCHRONOUS.

 DATA:

 lt_return TYPE TABLE OF bapireturn,

 ls_return TYPE bapireturn,

 ht_return1 TYPE bapirettab,

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 25

 ht_return2 TYPE bapirettab,

 ls_hreturn TYPE LINE OF bapirettab.

 DATA:

 lv_purchaseorder TYPE ebeln,

 lv_vendor TYPE elifn,

 lt_header TYPE TABLE OF bapiekkol,

 ls_header TYPE bapiekkol,

 lt_item TYPE TABLE OF bapiekpo,

 ls_item TYPE bapiekpo,

 lt_schedule TYPE TABLE OF bapieket,

 ls_schedule TYPE bapieket.

 DATA:

 ls_out_header TYPE MDEPURCHASE_ORDER_HEADER,

 ls_out_item TYPE MDEPURCHASE_ORDER_ITEM

 lt_out_item TYPE TABLE OF MDEPURCHASE_ORDER_ITEM,

 ls_out_schedule TYPE MDEPURCHASE_ORDER_ITEM_SCHEDUL,

 lt_out_schedule TYPE TABLE OF MDEPURCHASE_ORDER_ITEM_SCHEDUL.

 DATA:

 ls_purchase_order_vendor_addr TYPE
epv_purchase_order_vendor_addr.

 MOVE input-purchase_order_item_list_by_h-purchase_order_id TO
lv_purchaseorder.

 MOVE input-purchase_order_item_list_by_h-vendor_id TO
lv_vendor.

 CALL FUNCTION 'TRANSACTION_BEGIN'.

 CALL FUNCTION 'BAPI_PO_GETDETAIL'

 EXPORTING

 purchaseorder = lv_purchaseorder

 items = 'X'

* ACCOUNT_ASSIGNMENT = ' '

 schedules = 'X'

* HISTORY = ' '

* ITEM_TEXTS = ' '

* HEADER_TEXTS = ' '

* SERVICES = ' '

* CONFIRMATIONS = ' '

* SERVICE_TEXTS = ' '

* EXTENSIONS = ' '

 IMPORTING

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 26

 po_header = ls_header

* po_address =

 TABLES

* PO_HEADER_TEXTS =

 po_items = lt_item

* PO_ITEM_ACCOUNT_ASSIGNMENT =

 po_item_schedules = lt_schedule

* PO_ITEM_CONFIRMATIONS =

* PO_ITEM_TEXTS =

* PO_ITEM_HISTORY =

* PO_ITEM_HISTORY_TOTALS =

* PO_ITEM_LIMITS =

* PO_ITEM_CONTRACT_LIMITS =

* PO_ITEM_SERVICES =

* PO_ITEM_SRV_ACCASS_VALUES =

 return = lt_return.

* PO_SERVICES_TEXTS =

* EXTENSIONOUT =.

 LOOP AT lt_return INTO ls_return.

 MOVE-CORRESPONDING ls_return TO ls_hreturn.

 APPEND ls_hreturn TO ht_return1.

 ENDLOOP.

 CALL FUNCTION 'EPV_FILTER_MESSAGES'

 EXPORTING

 information = 'X'

 success = 'X'

 warning = 'X'

 return_in = ht_return1

 IMPORTING

 return_out = ht_return1.

 IF LINES(ht_return1) < 0.

 CALL METHOD cl_proxy_fault=>raise

 EXPORTING

 exception_class_name = 'CX_FOUNDATION_LAYER_FAULT'

 bapireturn_tab = ht_return1.

 ELSE.

 ls_out_header-purchase_order_id = ls_header-po_number.

 ls_out_header-vendor_id = ls_header-vendor.

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 27

 ls_out_header-vendor_reference = ls_header-ref_1.

 LOOP AT lt_item INTO ls_item.

 REFRESH lt_out_schedule.

 LOOP AT lt_schedule INTO ls_schedule WHERE po_item EQ ls_item-
po_item.

 ls_out_schedule-id = ls_schedule-serial_no.

 ls_out_schedule-delivery_date = ls_schedule-deliv_date.

 ls_out_schedule-quantity-value = ls_schedule-quantity.

 ls_out_schedule-quantity-unit_code = ls_item-unit.

 APPEND ls_out_schedule TO lt_out_schedule.

 ENDLOOP.

 ls_out_item-product_id = ls_item-material.

 ls_out_item-nominator_qua_to_prc_unit = ls_item-conv_num1.

 ls_out_item-denominator_qua_to_prc_unit = ls_item-conv_den1.

 ls_out_item-purchase_order_item_id = ls_item-po_item.

 ls_out_item-quantity-value = ls_item-quantity.

 ls_out_item-quantity-unit_code = ls_item-unit.

 ls_out_item-price-amount-currency_code = ls_header-
currency.

 ls_out_item-price-amount-value = ls_item-net_price.

 ls_out_item-price-base_quantity-value = ls_item-
price_unit.

 ls_out_item-price-base_quantity-unit_code = ls_item-
orderpr_un.

 ls_out_item-price-base_quantity-unit_code = ls_item-
orderpr_un.

 ls_out_item-schedule_line = lt_out_schedule.

 APPEND ls_out_item TO lt_out_item.

 ENDLOOP.

 output-purchase_order_idresponse-purchase_order_header =
ls_out_header.

 output-purchase_order_idresponse-purchase_order_item =
lt_out_item.

ENDIF.

endmethod.

MDE2PURCHASE_ORDER_CREATE

method II_MDE2PURCHASE_ORDER_CREATE_R~EXECUTE_SYNCHRONOUS.

* transaction controlling

 data:

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 28

 lt_return TYPE bapirettab,

 lt_return_errors TYPE bapirettab,

 lv_transaction_id TYPE ARFCTID.

**general params and BAPI data

 DATA:

* Values for general parameters

 lv_plant TYPE werks_d value '0001',

 lv_pur_org TYPE ekorg value '0001',

 lv_pur_group TYPE bkgrp value '005',

 lv_current_item_no TYPE bapimepoitem-po_item,

 lv_sched_line TYPE etenr value 1,

 lv_del_datcat_ext TYPE lpein value 'D',

* BAPI input data

 ls_header TYPE bapimepoheader,

 ls_headerx TYPE bapimepoheaderx,

 ls_item TYPE bapimepoitem,

 lt_item TYPE TABLE OF bapimepoitem,

 ls_itemx TYPE bapimepoitemx,

 lt_itemx TYPE TABLE OF bapimepoitemx,

 ls_schedule TYPE BAPIMEPOSCHEDULE,

 lt_schedule TYPE TABLE OF BAPIMEPOSCHEDULE,

 ls_schedulex TYPE BAPIMEPOSCHEDULX,

 lt_schedulex TYPE TABLE OF BAPIMEPOSCHEDULX,

* BAPI output data

 lv_order_number TYPE bapimepoheader-po_number,

 bapiret TYPE bapirettab,

* XI data structures

 ls_xi_item TYPE MDE2PURCHASE_ORDER_ITEM_CREATE.

 CALL FUNCTION 'TRANSACTION_BEGIN'

 IMPORTING

 TRANSACTION_ID = lv_transaction_id

 .

*** begin BAPI po create section

 ls_header-purch_org = lv_pur_org.

 ls_header-pur_group = lv_pur_group.

** Fill header values received from caller

 ls_header-vendor = input-purchase_order_create_request-vendor_id.

 ls_header-currency = input-purchase_order_create_request-currency.

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 29

** Flags for provided header files

 ls_headerx-currency = 'X'.

 ls_headerx-vendor = 'X'.

 ls_headerx-purch_org = 'X'.

 ls_headerx-pur_group = 'X'.

* ls_headerx-doc_type = 'X'.

** Items

 lv_current_item_no = 10.

 LOOP AT input-purchase_order_create_request-items INTO ls_xi_item.

** Item fields

 CLEAR ls_item.

 ls_item-plant = lv_plant.

 ls_item-po_item = lv_current_item_no.

 ls_item-material = ls_xi_item-product_id.

 ls_item-quantity = ls_xi_item-quantity-value.

 ls_item-po_unit = ls_xi_item-quantity-unit_code.

 ls_item-net_price = ls_xi_item-price.

 INSERT ls_item INTO TABLE lt_item.

** Flags for provided item fields

 CLEAR ls_itemx.

 ls_itemx-po_item = lv_current_item_no.

 ls_itemx-material = 'X'.

 ls_itemx-plant = 'X'.

 ls_itemx-po_itemx ='X'.

 ls_itemx-quantity = 'X'.

 ls_itemx-net_price = 'X'.

 INSERT ls_itemx INTO TABLE lt_itemx.

** Schedule fields per item

 CLEAR ls_schedule.

 ls_schedule-po_item = lv_current_item_no.

 ls_schedule-sched_line = lv_sched_line.

 ls_schedule-del_datcat_ext = lv_del_datcat_ext.

 ls_schedule-delivery_date = ls_xi_item-delivery_date.

 INSERT ls_schedule INTO TABLE lt_schedule.

** Flags for provided schedule fields

 CLEAR ls_schedulex.

 ls_schedulex-po_item = lv_current_item_no.

 ls_schedulex-po_itemx ='X'.

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 30

 ls_schedulex-sched_line ='X'.

 ls_schedulex-del_datcat_ext = 'X'.

 ls_schedulex-delivery_date = 'X'.

 INSERT ls_schedulex INTO TABLE lt_schedulex.

 ADD 10 TO lv_current_item_no.

 ENDLOOP.

 CALL FUNCTION 'BAPI_PO_CREATE1'

 EXPORTING

 poheader = ls_header

 poheaderx = ls_headerx

 IMPORTING

 exppurchaseorder = lv_order_number

 TABLES

 return = bapiret

 poitem = lt_item

 poitemx = lt_itemx

 poschedule = lt_schedule

 poschedulex = lt_schedulex

.

*** end BAPI po create section

output-purchase_order_create_response = lv_order_number.

**** Check errors

 CALL FUNCTION 'EPV_FILTER_MESSAGES'

 EXPORTING

 information = 'X'

 success = 'X'

 warning = 'X'

 return_in = lt_return

 IMPORTING

 return_out = lt_return_errors.

 if lines(lt_return_errors) > 0.

 call method cl_proxy_fault=>raise

 EXPORTING

 exception_class_name = 'CX_MDEEXCHANGE_FAULT_DAT'

 bapireturn_tab = lt_return.

 endif.

 CALL FUNCTION 'TRANSACTION_END'

 EXPORTING

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 31

 transaction_id = lv_transaction_id.

endmethod.

Appendix B : Backend Configuration and material master data
The eSOA Demo Scenario is cutting through all layers of the SAP Netweaver stack including an
mySAP ERP backend. Since SAP will deliver substantial ready-to-run enterprise services, which
are recommended to be used out-of-the-box and to reduce complexity in this multi layer
scenario, we keep the backend implementation part small.
However the eSOA Demo scenario introduces enabling custom eSOA compliant services in the
backend, too. If you intend to implement the scenario as it is a few master data have to be edited
in a mySAP ERP IDES backend.
This document describes necessary steps to edit the required master data in your ERP system.

Understanding the structure of the master data

The material master has a hierarchical structure resembling the organizational structure of the
Company. Some material data is valid at all organizational levels, while other data is valid only at
certain levels. This causes some dependencies even for our simple scenario. An example of
corporate structure with purchasing organization is given in the following graphic representation:

In every SAP system the client is the top-level of the organizational level. Several company
codes can be assigned to one client. In turn, several plants can be assigned to a company code,
and several storage locations assigned to a plant.

Master Data

Organisational Structure used for scenario

Data Value

Client <your login client> - not needed to be

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 32

edited explicitly

Company code 0001

Purchase Organization 0001

Plant 0001

Purchase Group 027

You may adapt this values according to your own settings.
Creating a vendor

1. Call transaction XK01.

2. Enter vendor name (e.g. ESADEMO) company code ‘0001’ and purchase organization ‘0001’
and Account group ‘LIFA’.

3. Enter the vendor address data. At least you have to edit all required fields (marked with

checkbox).

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 33

4. Press (F8) 3 times and proceed with Accounting information view. At least you have to
edit Reconciliation account and the cash management group.

5. Save the vendor data.

Create the materials

To provide purchasing option for additional course materials we have to create the materials
master data with transaction MM01.

Table 1: Materials used in scenario

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 34

Material-No Description Price

DEMO-1 FLIPCHART 100 X 50 40,-

DEMO-2 HANDOUT: ESOA , SAP PRESS 60,-

DEMO-3 HANDOUT: SAP NETWEAVER FOR DUMMIES 45,-

DEMO-4 MODERATION MATERIAL SET 70,-

DEMO-5 PIN BOARD 150 X 150 80,-

DEMO-6 WHITEBOARD 200 X 100 120,-

Table 2: Master data that must be edited for each material

View Field Value according scenario

Material description See table above

Base Unit of Measure PC

Basic data 1

Material group 006

Purchasing Purchasing group 027

Base Unit of measure PC

Valuation Class 3000

Accounting 1

Standard Price According to material

Steps:

1. Call transaction MM01 and enter Material number, industry type and material type as follows.

2. Klick ‘Organizational Levels’ and mark ‘purchasing’, ‘basic data1’ and ‘accouning1’ to enable

the corresponding views for your materials.

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 35

3. Use plant ‘0001’ in the following pop-up.

4. Edit values according table 2. The tabs of required views are marked as depicted. You can
also select the views directly from symbol on the right hand of the tabulator bar.

 You can check sales order creation by using transaction ME21N.

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 36

Required values for BAPI call

Structure type Structure name Field Description

purch_org Purchase organization

purch_group Key for a buyer or a group of buyers,
who is/are responsible for certain
purchasing activities.

doc_type Purchasing document type

vendor The vendor

header BAPIMEPOHEADER

currency Currency

po_item Item number

plant Plant of material location

material Material number

quantity Integral quantity number

po_unit Unit for quantity

item table BAPIMEPOITEM

net_price Price of the material

You should now test the BAPI calls in SE37 accordingly.

EDM EMM Scenario Part I: Service Enabling - How to Implement eSOA-Compliant Services

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2006 SAP AG 37

Copyright
© Copyright 2006 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express
permission of SAP AG. The information contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software components of other
software vendors.

Microsoft, Windows, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex, MVS/ESA, AIX, S/390, AS/400, OS/390, OS/400, iSeries,
pSeries, xSeries, zSeries, z/OS, AFP, Intelligent Miner, WebSphere, Netfinity, Tivoli, Informix, i5/OS, POWER, POWER5,
OpenPower and PowerPC are trademarks or registered trademarks of IBM Corporation.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered trademarks of Adobe
Systems Incorporated in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or registered
trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide Web Consortium,
Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for technology invented and
implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and services mentioned herein
as well as their respective logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries all over the world. All other product and service names mentioned are the trademarks of their respective
companies. Data contained in this document serves informational purposes only. National product specifications may
vary.

These materials are subject to change without notice. These materials are provided by SAP AG and its affiliated
companies ("SAP Group") for informational purposes only, without representation or warranty of any kind, and SAP
Group shall not be liable for errors or omissions with respect to the materials. The only warranties for SAP Group
products and services are those that are set forth in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an additional warranty.

These materials are provided “as is” without a warranty of any kind, either express or implied, including but not limited to,
the implied warranties of merchantability, fitness for a particular purpose, or non-infringement.

SAP shall not be liable for damages of any kind including without limitation direct, special, indirect, or consequential
damages that may result from the use of these materials.

SAP does not warrant the accuracy or completeness of the information, text, graphics, links or other items contained
within these materials. SAP has no control over the information that you may access through the use of hot links
contained in these materials and does not endorse your use of third party web pages nor provide any warranty
whatsoever relating to third party web pages.

Any software coding and/or code lines/strings (“Code”) included in this documentation are only examples and are not
intended to be used in a productive system environment. The Code is only intended better explain and visualize the
syntax and phrasing rules of certain coding. SAP does not warrant the correctness and completeness of the Code given
herein, and SAP shall not be liable for errors or damages caused by the usage of the Code, except if such damages were
caused by SAP intentionally or grossly negligent.

	Applies to:
	Summary
	Author Bio
	Table of Contents
	Introduction
	Overview
	Scope

	Implementation Steps in the Exchange Infrastructure (XI)
	Defining a Software Component Version in the System Landscape Directory (SLD)
	Designing Interface Metadata in the Integration builder
	Starting the Integration Builder
	Designing Custom Interface Objects
	Design Message Types
	Design the Service Interfaces and Their Operations Attributes
	Optional Integration Scenarios
	Importing/Exporting Interface Objects
	Enhancement of SAP standard services

	Implementation Steps in MySAP ERP Backend
	Generate ABAP Proxys
	Implementing the Proxy Class
	Publishing of Interfaces as Web Service

	Testing and Debugging
	Testing the Web Service
	Testing the Proxy
	Debug Your Interface
	Tracking Message Flow on Backend Site

	Related Content
	Appendix
	Appendix A Implementation Code
	MDEPRODUCT_DETAIL_QUERY_RESPONSE
	MDEPRODUCT_LIST_QUERY_RESPONSE
	MDEPURCHASE_ORDER_BY_IDQUERY
	MDE2PURCHASE_ORDER_CREATE

	Appendix B : Backend Configuration and material master data
	Understanding the structure of the master data
	Master Data
	Required values for BAPI call

	Copyright

