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Typographic Conventions 
Type Style  Description 

Example Text Words or characters quoted 
from the screen. These 
include field names, screen 
titles, pushbuttons labels, 
menu names, menu paths, 
and menu options. 

Cross-references to other 
documentation 

Example text Emphasized words or 
phrases in body text, graphic 
titles, and table titles 

Example text File and directory names and 
their paths, messages, 
names of variables and 
parameters, source text, and 
names of installation, 
upgrade and database tools. 

Example text User entry texts. These are 
words or characters that you 
enter in the system exactly as 
they appear in the 
documentation. 

<Example 
text> 

Variable user entry. Angle 
brackets indicate that you 
replace these words and 
characters with appropriate 
entries to make entries in the 
system. 

EXAMPLE TEXT Keys on the keyboard, for 
example, F2 or ENTER. 

Icons 
Icon Description 

 Caution 

 Note or Important 

 Example 

 Recommendation or Tip 
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How To... Integrate Custom Formulas into the Formula Builder  

1. Business Scenario 
The business scenario for this document is that a customer has a need to transform data coming into 
the data warehouse, and consistently uses the same data transformation. In this example, it is to 
transform a timestamp into a date field. Instead of continuously writing the same coding in ABAP 
routines, the customer has the need to create a reusable formula. 

 

2. Background Information 
Custom formulas are introduced into the transformation library of the Formula Builder by means of 
BAdi (Business Add-In) RSAR_CONNECTOR. The step by step solution that follows will demonstrate 
how to achieve this.  

To view the definition of the BAdi go to transaction SE19 and enter the BAdi name 
RSAR_CONNECTOR: 

 

 

 Note 
The ‘GET’ method is the key to the solution. It is called when you list all the formulas that 
are available. We will enter all our custom methods within the ‘GET’ method making 
them available at runtime to the BI developer.  
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3. Prerequisites 
There are no prerequisites for this How-To-Guide, however the following reading material will help if 
you are not familiar with ABAP Classes and Method: 

Reference 1 - ABAP Business Development and Service Provisioning 

Reference 2 - Creating, Editing, and Deleting Enhancement Implementations 

Reference 3 - The Transformation Library and Formula Builder Use 
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4. Step-by-Step Procedure 
The guide starts you off by creating a BAdi implementation. This implementation will generate a class 
which we will use to store our custom functions (implemented as methods) in. When the custom 
methods are written and activated, we can then reference them in our BAdi implementation. Once 
linked, we will have them available in the Formula Builder.  

 CAUTION 
The guide does not deal with error handling for e.g. exception handling. It is important to 
incorporate proper error handling in a production scenario. 

4.1 Create an implementation for BAdi 
RSAR_CONNECTOR  

... 

1. Go to transaction SE19. In the ‘Create Implementation’ section, change the radio button to 
‘Classic BAdi’ and enter ‘RSAR_CONNECTOR’ as the BAdi name. 

 

2. Press the ‘Create Impl.’ Button. 

 

3. Give the implementation a suitable name for e.g. ZCUSTOM_FUNCTIONS, and then press the 

continue button ( ). 
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4. This will take you to the definition of the implementation.  

 Note 
Remember the name of the implementing class you can see in the screenshot 

(ZCL_IM_CUSTOM_FUNCTIONS), we will use this later to store our methods. 

 

5. Press the activate button on the toolbar in order to activate your implementation and its 
underlying objects. 

 

6. Assign your implementation to a transportable package (for e.g. ZBW) and include it in a 
transport request. 
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4.2 Create custom methods i.e. custom formula 
... 

1. Go to transaction SE24 in order to edit Class ZCL_IM_CUSTOM_FUNCTIONS. Alternatively, 
instead of using the class generated from creating the implementation, you could implement 
your own class with methods. 

 

2. Press the ‘Change’ button. 

 

3. On the ‘Methods’ tab you can implement as many custom methods as you wish. In the 
screenshot 3 custom methods are visible: C_TIMESTAMP_TO_DATE; C_TEST and 
C_TIMESTAMP_TO_DAT2. 
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 Important 
Methods must have the following attributes when you create them: 

• They are declared static and public. 

• They can only have importing, exporting, and returning parameters. Changing 
parameters are not permitted. 

• They can only have one exporting or returning parameter. 

• Exporting parameters cannot have a generic type. 

4. Give your method a meaningful technical name and description, and declare it as Static and 
Public. 

 

 

5. Once your method has a name and attributes, proceed to defining its parameters by pressing 
the ‘Parameters’ button. 

 

6. Importing refers to the parameter that you pass to the method for execution and exporting refers 
to the parameter that is passed back once the method has executed. In our example, we pass 
an ‘Importing’ parameter I_TIMESTAMP (timestamp) which is then converted to a calendar day 
and passed back via exporting parameter E_DAT. 
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7. Press the ‘Method’ button to return back to the main method definition. 

 

8. Double-click on the method name or press the  button to view the method code. 

9. Enter code between the sections “METHOD <method name>. ENDMETHOD.” Remember to 
use your parameters exactly as you have named them on the parameter definition screen for 
your method. In the screenshot you will see that we pass the timestamp to function 
“RS_TBBW_CONVERT_TIMESTAMP” which converts it to a date. 

 

10. Activate your method. 

 

4.3 Integrate custom methods into your 
implementation 

... 

1. Go back to transaction SE19, and in the ‘Edit Implementation’ section, change the radio button 
to ‘Classic BAdi’ and enter BAdi name ‘ZCUSTOM_FUNCTIONS’.  
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2. Press the ‘Change’ button. 

 

3. Make sure to inactivate your BAdi implementation as you cannot edit active implementations.   

 

4. Double-click on the ‘GET’ method on the ‘Interface’ tab in order to incorporate your custom 
methods as formulas. 

 

 Note 
The ‘GET’ method allows us to do two things: 

• Firstly we get to create new categories for custom formulas (optional) 

• Secondly we get to assign custom formulas to those new groupings or alternatively to 
the default grouping.  

5. Initially the method will be empty. 

 

6. The base format of the code should look like the code that follows. The logic is as follows:  
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 When i_key is blank, you can use it to define new categories for formulas. In this section 
appending to c_operands creates a new category. 

 When i_key is populated, it is referring to a category name in which you want to place the 
custom formulas. In this section appending to c_operands creates a new function within 
that category. 

METHOD IF_EX_RSAR_CONNECTOR~GET. 

//This is a code sample block 

     Data: l_function  type SFBEOPRND. 

     Case i_key. 

     * Importing parameter: key with function category 

     When ‘ ‘. 

     * Use this section to declare new groupings of formulas 

     When ‘CUSTOM’. 

     * default category 

     Endcase. 

 ENDMETHOD. 

 Tip 
The default category is CUSTOM. If you choose not to create your own categories then 
all custom formulas should be placed in the section when i_key is ‘CUSTOM’. 

 

7. Code Sample 1  Creating a category for functions called ‘Custom: Date/Time Functions’. 

 
METHOD IF_EX_RSAR_CONNECTOR~GET. 

      Data: l_function  type SFBEOPRND. 

      CASE i_key. 

        WHEN space. 

        l_function-descriptn =  'Custom: Date/Time Functions'. 

* Description of category 

        l_function-tech_name = 'C_TIME'. 

* Name of category in uppercase letters 
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        APPEND l_function TO c_operands. 

*** Coding Continues for Formulas *** 

     . . . 

       ENDCASE.  

 ENDMETHOD. 

 Tip 
Each new category needs the following two fields populated: 

1. descriptn  →  This is the description that will be displayed within the Formula Builder 

2. tech_name  →  This is technical name that will uniquely identify the category in the list 
of categories 

The fields, class and method, must NOT be populated as they are only applicable when 
loading new formulas. 

 

8. Code Sample 2  Adding formulas within the custom category C_TIME. In this code sample we 
have loaded 3 custom formulas: C_TIMESTAMP_TO_DATE, C_TIMESTAMP_TO_DAT2 and 
C_TEST. 

 
METHOD if_ex_rsar_connector~get. 

  DATA: l_function TYPE sfbeoprnd. 

    * Structure with the description of the function 

CASE i_key. 

    WHEN space. 

*** Coding Continues for Categories *** 

    WHEN 'C_TIME'. 

      CLEAR l_function. 

      l_function-tech_name = 'C_TIMESTAMP_TO_DATE'. 

      l_function-descriptn = 'Convert Timestamp (Len 15) to Date'. 

      l_function-class     = 'ZCL_IM_CUSTOM_FUNCTIONS'. 

      l_function-method    = 'C_TIMESTAMP_TO_DATE'. 

      APPEND l_function TO c_operands. 

******************************************************************* 

      CLEAR l_function. 
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      l_function-tech_name = 'C_TIMESTAMP_TO_DAT2'. 

      l_function-descriptn = 'Convert Timestamp (Len 21) to Date'. 

      l_function-class     = 'ZCL_IM_CUSTOM_FUNCTIONS'. 

      l_function-method    = 'C_TIMESTAMP_TO_DAT2'. 

      APPEND l_function TO c_operands. 

******************************************************************* 

      CLEAR l_function. 

      l_function-tech_name = 'C_TEST'. 

      l_function-descriptn = 'Test function 1'. 

      l_function-class     = 'ZCL_IM_CUSTOM_FUNCTIONS'. 

      l_function-method    = 'C_TEST'. 

APPEND l_function TO c_operands. 

* ... further descriptions 

  ENDCASE. 

ENDMETHOD. 

 Important 
Each new formula needs the following four fields populated: 

1. descriptn  →  This is the description that will be displayed within the Formula Builder 

2. tech_name  →  This is technical name that will uniquely identify the formula in the list 
of formulas 

3. class  →  This is the ABAP class in which the formula method is implemented 

4. method  →  This is the method within the ABAP class mentioned above in which the 
formula is implemented 

 

9. Activate the GET method using the activate button on the toolbar. 

 

10. Go back one screen and activate your implementation. 

 

4.4 View in Formula Builder 
... 

1. To access your custom formulas, enter the Formula Builder either from your transformation, 
update rules or transfer rules.  

April 2008 11 



How To... Integrate Custom Formulas into the Formula Builder  

 

2. In the list of formula categories, select our custom category C_TIME. 

 

3. All our custom formulas assigned to that category are now available. 
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