

SAP NetWeaver
How-To Guide

How To... Integrate Custom
Formulas into the Formula Builder

Applicable Releases:

SAP NetWeaver 2004

SAP NetWeaver 7.0

IT Practice:
Business Information Management

IT Scenario:
Enterprise Data Warehousing

Version 1.0

April 2008

© Copyright 2008 SAP AG. All rights reserved.

No part of this publication may be reproduced or

transmitted in any form or for any purpose without the

express permission of SAP AG. The information contained

herein may be changed without prior notice.

Some software products marketed by SAP AG and its

distributors contain proprietary software components of

other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are

registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel

Sysplex, MVS/ESA, AIX, S/390, AS/400, OS/390,

OS/400, iSeries, pSeries, xSeries, zSeries, z/OS, AFP,

Intelligent Miner, WebSphere, Netfinity, Tivoli, Informix,

i5/OS, POWER, POWER5, OpenPower and PowerPC are

trademarks or registered trademarks of IBM Corporation.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader

are either trademarks or registered trademarks of Adobe

Systems Incorporated in the United States and/or other

countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered

trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame,

WinFrame, VideoFrame, and MultiWin are trademarks or

registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or

registered trademarks of W3C®, World Wide Web

Consortium, Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems,

Inc., used under license for technology invented and

implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP

NetWeaver, and other SAP products and services

mentioned herein as well as their respective logos are

trademarks or registered trademarks of SAP AG in

Germany and in several other countries all over the world.

All other product and service names mentioned are the

trademarks of their respective companies. Data contained

in this document serves informational purposes only.

National product specifications may vary.

These materials are subject to change without notice.

These materials are provided by SAP AG and its affiliated

companies ("SAP Group") for informational purposes only,

without representation or warranty of any kind, and SAP

Group shall not be liable for errors or omissions with

respect to the materials. The only warranties for SAP

Group products and services are those that are set forth in

the express warranty statements accompanying such

products and services, if any. Nothing herein should be

construed as constituting an additional warranty.

These materials are provided “as is” without a warranty of

any kind, either express or implied, including but not

limited to, the implied warranties of merchantability,

fitness for a particular purpose, or non-infringement.

SAP shall not be liable for damages of any kind including

without limitation direct, special, indirect, or consequential

damages that may result from the use of these materials.

SAP does not warrant the accuracy or completeness of the

information, text, graphics, links or other items contained

within these materials. SAP has no control over the

information that you may access through the use of hot

links contained in these materials and does not endorse

your use of third party web pages nor provide any warranty

whatsoever relating to third party web pages.

SAP NetWeaver “How-to” Guides are intended to simplify

the product implementation. While specific product

features and procedures typically are explained in a

practical business context, it is not implied that those

features and procedures are the only approach in solving a

specific business problem using SAP NetWeaver. Should

you wish to receive additional information, clarification or

support, please refer to SAP Consulting.

Any software coding and/or code lines / strings (“Code”)

included in this documentation are only examples and are

not intended to be used in a productive system

environment. The Code is only intended better explain and

visualize the syntax and phrasing rules of certain coding.

SAP does not warrant the correctness and completeness of

the Code given herein, and SAP shall not be liable for

errors or damages caused by the usage of the Code, except

if such damages were caused by SAP intentionally or

grossly negligent.

Disclaimer

Some components of this product are based on Java™. Any

code change in these components may cause unpredictable

and severe malfunctions and is therefore expressively

prohibited, as is any decompilation of these components.

Any Java™ Source Code delivered with this product is only

to be used by SAP’s Support Services and may not be

modified or altered in any way.

Document History
Document Version Description

1.00 First official release of this guide

Typographic Conventions
Type Style Description

Example Text Words or characters quoted
from the screen. These
include field names, screen
titles, pushbuttons labels,
menu names, menu paths,
and menu options.

Cross-references to other
documentation

Example text Emphasized words or
phrases in body text, graphic
titles, and table titles

Example text File and directory names and
their paths, messages,
names of variables and
parameters, source text, and
names of installation,
upgrade and database tools.

Example text User entry texts. These are
words or characters that you
enter in the system exactly as
they appear in the
documentation.

<Example
text>

Variable user entry. Angle
brackets indicate that you
replace these words and
characters with appropriate
entries to make entries in the
system.

EXAMPLE TEXT Keys on the keyboard, for
example, F2 or ENTER.

Icons
Icon Description

 Caution

 Note or Important

 Example

 Recommendation or Tip

Table of Contents

1. Business Scenario... 1

2. Background Information... 1

3. Prerequisites .. 2

4. Step-by-Step Procedure.. 3
4.1 Create an implementation for BAdi RSAR_CONNECTOR .. 3
4.2 Create custom methods i.e. custom formula.. 5
4.3 Integrate custom methods into your implementation.. 7
4.4 View in Formula Builder.. 11

How To... Integrate Custom Formulas into the Formula Builder

1. Business Scenario
The business scenario for this document is that a customer has a need to transform data coming into
the data warehouse, and consistently uses the same data transformation. In this example, it is to
transform a timestamp into a date field. Instead of continuously writing the same coding in ABAP
routines, the customer has the need to create a reusable formula.

2. Background Information
Custom formulas are introduced into the transformation library of the Formula Builder by means of
BAdi (Business Add-In) RSAR_CONNECTOR. The step by step solution that follows will demonstrate
how to achieve this.

To view the definition of the BAdi go to transaction SE19 and enter the BAdi name
RSAR_CONNECTOR:

 Note
The ‘GET’ method is the key to the solution. It is called when you list all the formulas that
are available. We will enter all our custom methods within the ‘GET’ method making
them available at runtime to the BI developer.

April 2008 1

How To... Integrate Custom Formulas into the Formula Builder

3. Prerequisites
There are no prerequisites for this How-To-Guide, however the following reading material will help if
you are not familiar with ABAP Classes and Method:

Reference 1 - ABAP Business Development and Service Provisioning

Reference 2 - Creating, Editing, and Deleting Enhancement Implementations

Reference 3 - The Transformation Library and Formula Builder Use

April 2008 2

https://www.sdn.sap.com/irj/sdn/abap?rid=/webcontent/uuid/405c7b45-093d-2a10-8a94-e2c261603035
http://help.sap.com/saphelp_nw70/helpdata/en/b2/873842134bad04e10000000a1550b0/frameset.htm
http://help.sap.com/saphelp_nw70/helpdata/en/e3/e60138fede083de10000009b38f8cf/frameset.htm

How To... Integrate Custom Formulas into the Formula Builder

4. Step-by-Step Procedure
The guide starts you off by creating a BAdi implementation. This implementation will generate a class
which we will use to store our custom functions (implemented as methods) in. When the custom
methods are written and activated, we can then reference them in our BAdi implementation. Once
linked, we will have them available in the Formula Builder.

 CAUTION
The guide does not deal with error handling for e.g. exception handling. It is important to
incorporate proper error handling in a production scenario.

4.1 Create an implementation for BAdi
RSAR_CONNECTOR

...

1. Go to transaction SE19. In the ‘Create Implementation’ section, change the radio button to
‘Classic BAdi’ and enter ‘RSAR_CONNECTOR’ as the BAdi name.

2. Press the ‘Create Impl.’ Button.

3. Give the implementation a suitable name for e.g. ZCUSTOM_FUNCTIONS, and then press the

continue button ().

April 2008 3

How To... Integrate Custom Formulas into the Formula Builder

4. This will take you to the definition of the implementation.

 Note
Remember the name of the implementing class you can see in the screenshot

(ZCL_IM_CUSTOM_FUNCTIONS), we will use this later to store our methods.

5. Press the activate button on the toolbar in order to activate your implementation and its
underlying objects.

6. Assign your implementation to a transportable package (for e.g. ZBW) and include it in a
transport request.

April 2008 4

How To... Integrate Custom Formulas into the Formula Builder

4.2 Create custom methods i.e. custom formula
...

1. Go to transaction SE24 in order to edit Class ZCL_IM_CUSTOM_FUNCTIONS. Alternatively,
instead of using the class generated from creating the implementation, you could implement
your own class with methods.

2. Press the ‘Change’ button.

3. On the ‘Methods’ tab you can implement as many custom methods as you wish. In the
screenshot 3 custom methods are visible: C_TIMESTAMP_TO_DATE; C_TEST and
C_TIMESTAMP_TO_DAT2.

April 2008 5

How To... Integrate Custom Formulas into the Formula Builder

 Important
Methods must have the following attributes when you create them:

• They are declared static and public.

• They can only have importing, exporting, and returning parameters. Changing
parameters are not permitted.

• They can only have one exporting or returning parameter.

• Exporting parameters cannot have a generic type.

4. Give your method a meaningful technical name and description, and declare it as Static and
Public.

5. Once your method has a name and attributes, proceed to defining its parameters by pressing
the ‘Parameters’ button.

6. Importing refers to the parameter that you pass to the method for execution and exporting refers
to the parameter that is passed back once the method has executed. In our example, we pass
an ‘Importing’ parameter I_TIMESTAMP (timestamp) which is then converted to a calendar day
and passed back via exporting parameter E_DAT.

April 2008 6

How To... Integrate Custom Formulas into the Formula Builder

7. Press the ‘Method’ button to return back to the main method definition.

8. Double-click on the method name or press the button to view the method code.

9. Enter code between the sections “METHOD <method name>. ENDMETHOD.” Remember to
use your parameters exactly as you have named them on the parameter definition screen for
your method. In the screenshot you will see that we pass the timestamp to function
“RS_TBBW_CONVERT_TIMESTAMP” which converts it to a date.

10. Activate your method.

4.3 Integrate custom methods into your
implementation

...

1. Go back to transaction SE19, and in the ‘Edit Implementation’ section, change the radio button
to ‘Classic BAdi’ and enter BAdi name ‘ZCUSTOM_FUNCTIONS’.

April 2008 7

How To... Integrate Custom Formulas into the Formula Builder

2. Press the ‘Change’ button.

3. Make sure to inactivate your BAdi implementation as you cannot edit active implementations.

4. Double-click on the ‘GET’ method on the ‘Interface’ tab in order to incorporate your custom
methods as formulas.

 Note
The ‘GET’ method allows us to do two things:

• Firstly we get to create new categories for custom formulas (optional)

• Secondly we get to assign custom formulas to those new groupings or alternatively to
the default grouping.

5. Initially the method will be empty.

6. The base format of the code should look like the code that follows. The logic is as follows:

April 2008 8

How To... Integrate Custom Formulas into the Formula Builder

 When i_key is blank, you can use it to define new categories for formulas. In this section
appending to c_operands creates a new category.

 When i_key is populated, it is referring to a category name in which you want to place the
custom formulas. In this section appending to c_operands creates a new function within
that category.

METHOD IF_EX_RSAR_CONNECTOR~GET.

//This is a code sample block

 Data: l_function type SFBEOPRND.

 Case i_key.

 * Importing parameter: key with function category

 When ‘ ‘.

 * Use this section to declare new groupings of formulas

 When ‘CUSTOM’.

 * default category

 Endcase.

 ENDMETHOD.

 Tip
The default category is CUSTOM. If you choose not to create your own categories then
all custom formulas should be placed in the section when i_key is ‘CUSTOM’.

7. Code Sample 1 Creating a category for functions called ‘Custom: Date/Time Functions’.

METHOD IF_EX_RSAR_CONNECTOR~GET.

 Data: l_function type SFBEOPRND.

 CASE i_key.

 WHEN space.

 l_function-descriptn = 'Custom: Date/Time Functions'.

* Description of category

 l_function-tech_name = 'C_TIME'.

* Name of category in uppercase letters

April 2008 9

How To... Integrate Custom Formulas into the Formula Builder

 APPEND l_function TO c_operands.

*** Coding Continues for Formulas ***

 . . .

 ENDCASE.

 ENDMETHOD.

 Tip
Each new category needs the following two fields populated:

1. descriptn → This is the description that will be displayed within the Formula Builder

2. tech_name → This is technical name that will uniquely identify the category in the list
of categories

The fields, class and method, must NOT be populated as they are only applicable when
loading new formulas.

8. Code Sample 2 Adding formulas within the custom category C_TIME. In this code sample we
have loaded 3 custom formulas: C_TIMESTAMP_TO_DATE, C_TIMESTAMP_TO_DAT2 and
C_TEST.

METHOD if_ex_rsar_connector~get.

 DATA: l_function TYPE sfbeoprnd.

 * Structure with the description of the function

CASE i_key.

 WHEN space.

*** Coding Continues for Categories ***

 WHEN 'C_TIME'.

 CLEAR l_function.

 l_function-tech_name = 'C_TIMESTAMP_TO_DATE'.

 l_function-descriptn = 'Convert Timestamp (Len 15) to Date'.

 l_function-class = 'ZCL_IM_CUSTOM_FUNCTIONS'.

 l_function-method = 'C_TIMESTAMP_TO_DATE'.

 APPEND l_function TO c_operands.

 CLEAR l_function.

April 2008 10

How To... Integrate Custom Formulas into the Formula Builder

 l_function-tech_name = 'C_TIMESTAMP_TO_DAT2'.

 l_function-descriptn = 'Convert Timestamp (Len 21) to Date'.

 l_function-class = 'ZCL_IM_CUSTOM_FUNCTIONS'.

 l_function-method = 'C_TIMESTAMP_TO_DAT2'.

 APPEND l_function TO c_operands.

 CLEAR l_function.

 l_function-tech_name = 'C_TEST'.

 l_function-descriptn = 'Test function 1'.

 l_function-class = 'ZCL_IM_CUSTOM_FUNCTIONS'.

 l_function-method = 'C_TEST'.

APPEND l_function TO c_operands.

* ... further descriptions

 ENDCASE.

ENDMETHOD.

 Important
Each new formula needs the following four fields populated:

1. descriptn → This is the description that will be displayed within the Formula Builder

2. tech_name → This is technical name that will uniquely identify the formula in the list
of formulas

3. class → This is the ABAP class in which the formula method is implemented

4. method → This is the method within the ABAP class mentioned above in which the
formula is implemented

9. Activate the GET method using the activate button on the toolbar.

10. Go back one screen and activate your implementation.

4.4 View in Formula Builder
...

1. To access your custom formulas, enter the Formula Builder either from your transformation,
update rules or transfer rules.

April 2008 11

How To... Integrate Custom Formulas into the Formula Builder

2. In the list of formula categories, select our custom category C_TIME.

3. All our custom formulas assigned to that category are now available.

April 2008 12

www.sdn.sap.com/irj/sdn/howtoguides

	1. Business Scenario
	2. Background Information
	3. Prerequisites
	4. Step-by-Step Procedure
	4.1 Create an implementation for BAdi RSAR_CONNECTOR
	4.2 Create custom methods i.e. custom formula
	4.3 Integrate custom methods into your implementation
	4.4 View in Formula Builder

