

Modeling the Data Warehouse Layer with
SAP NetWeaver Business Intelligence

Version 1.0
July 19, 2006

Guidelines_for_Data_Warehouse_Layer.doc Page 2 07.08.2006

Table of Contents:

1 Dos and Don’ts for Modeling a Data Warehouse Layer ...3

2 Data Warehouse Layer (Enterprise Data Warehouse) in BI ...4

2.1 Motivation and Benefits...4

2.2 Conceptual Layers of Data Warehousing with BI ..5

2.3 Modeling Examples..6

3 Document-Type Data (Line Items) in DataStore Objects and InfoCubes9

4 BI Data Models for Line Item and Header Information ...10

4.1 BI Data Model Scenarios ...10

4.2 Comparison of Different Scenarios ..16

4.3 General Recommendations ...16

5 Performance Aspects of the Data Warehouse Layer ...17

5.1 Performance When Activating Data and the BEx Reporting Indicator...17

5.2 Unique Records in DataStore Objects..17

5.3 Indexes..17

Guidelines_for_Data_Warehouse_Layer.doc Page 3 07.08.2006

Data Warehouse Layer
Data warehousing has developed into an advanced and complex technology. For some time it was assumed
that it was sufficient to store data in a star schema optimized for reporting. However this does not adequately
meet the needs for consistency and flexibility in the long run. Therefore data warehouses are now structured
using a layer architecture. The different layers contain data at differing levels of granularity. We differentiate
between the following layers:

● Persistent staging area

● Data warehouse

● Architected data marts

● Operational data store

Figure 1 Conceptual Layers of Data Warehousing

The data warehouse layer offers integrated, granular, historic, stable data that has not yet been modified for
a concrete usage and can therefore be seen as neutral. It acts as the basis for building consistent reporting
structures and allows you to react to new requirements with flexibility.

1 Dos and Don’ts for Modeling a Data Warehouse Layer
• It is generally not recommended that you create a stovepipe data model with:

o A direct dataflow from an extractor with document-type data to a highly aggregated data
mart InfoCube

o Proprietary creation of commonly-used central InfoObjects. It is recommended that you
reuse central InfoObjects like business partner, product or company code.

• If you have a heterogenous source system landscape that comprises data from different components
and systems: It is generally recommended that you create an intermediate consolidation layer within
your data model (for example, within the dataflow from data source to a data mart InfoCube). The
appropriate storage object for this layer is the DataStore object.

See example: full-blown content model (see section 2.3 of this document)

• If you are extracting document-type data that is not preaggregated to BI: It is generally recommended
that you build a data warehouse layer with DataStore objects where the data is stored in a slightly
denormalized form at the most appropriate level of granularity.

See example: light-weighted content model (see section 2.3 of this document)

• DataStore objects for a data warehouse layer should be modeled with the same granularity as the data
that is delivered by the extractor:

Guidelines_for_Data_Warehouse_Layer.doc Page 4 07.08.2006

o No aggregation of business-relevant data to retain information on operational level

o Slight denormalization is recommended: for example, header and item information from
document-type data can be flattened into one extract structure (see section 4 of this
document)

o Extractors for master and transactional mass data should be delta enabled

• Historical completeness of data to an appropriate extent where required: for example, adding a time
element to the data.

One example from SAP standard BI Content is the DataStore Object 0FIAR_O03 FI-AR: Line Item:

o Financials documents are updated in BI when document field entries of non-key fields are
changed: status and clearing data. The document status changes from open to cleared and
the clearing date is set simultaneously when the document status is changed.

o Thus without sending a separate change document, the changed information can be
retained in the data warehouse.Thereby, for example, aging lists can be created with
calculated business processing KPIs as a way of retaining the history of data changes.

2 Data Warehouse Layer (Enterprise Data Warehouse) in BI

2.1 Motivation and Benefits

Data warehousing provides data that is:

• Integrated as far as possible: master data is consolidated and master data is uniformly coded

• Consistent: central metadata models are shared to enable cross-application scenarios

• Historical: the history of the data is retained in dedicated data containers

• Complete: the data is not aggregated in dedicated data containers and is stored according to the
granularity of the OLTP data

Organizations and businesses with multiple BI implementations and a heterogenous source system
landscape face the challenge of avoiding islolated, inconsistent, stovepipe data warehouse solutions with:

• Redundant data flows

• Redundant extractions

• Redundant data stores

• Redundant data models

If this redundancy is not controlled, it is difficult to achieve integrated consistent reporting on the data and
metadata. Moreover, the whole administration of the data and metadata becomes more complex and
expensive.

A company-wide Enterprise Data Warehouse (EDW) concept helps to address these challenges. It
comprises aspects of:

• Data storage: a multi-layer concept for persistent data storage

• Data model: BI objects for each layer and their relationships

• System landscape: this is not discussed in this paper

The following sections concentrate on data modeling. They explain how you can implement a multi-layer
concept while focusing on the data warehouse layer as an element of this concept.

Guidelines_for_Data_Warehouse_Layer.doc Page 5 07.08.2006

2.2 Conceptual Layers of Data Warehousing with BI

The main motivation for a layer concept is that each layer has its own optimized structure and services for
the administration of data within an enterprise data warehouse. Therefore each layer also requires its own
metadata modeling limitations constraints (see Figure 1 Conceptual Layers of Data Warehousing).

a) Architected Data Mart Layer

• Analysis and reporting layer

• Common master data definitions (consolidated InfoObjects)

• Aggregated data

• Data manipulation with business logic, for example, calculation of process time KPIs (for example,
delivery time variance)

• Modeled using InfoCubes or DataStore objects

b) Data Warehouse Layer (DWH Layer)

• Corporate information repository of EDW

• Historical completeness - different levels of completeness are possible: from availability of latest
version with change date to change history of all versions

• No aggregation of reporting-relevant data; for example, document line-item granularity for document-
type data

• Normally no reporting targets – exception: operational reporting on line items

• Modeled using DataStore objects

• Common master data definitions (consolidated InfoObjects) to retain cross-system integration of
system-dependent master data

• Optional: separation into

o Propagation tier: data source-dependent, primary foundation for applications

o Integration tier: integrates data from different processes

This separation into two tiers produces the full-blown content model (See example
‘Global Spend Analysis’ in section 2.3.2 of this document).

c) Operational Data Store Layer

• For operational list reporting

• Common master data definitions (consolidated infoObjects)

• Transaction-near data

• Optional: Near real-time access

• Modeled using DataStore objects

What are the benefits of a specific DWH layer? Customers expect a DWH layer embedded in their overall
EDW strategy because it is used predominantly as:

• Information hub to distribute OLTP data from multiple source systems to BI targets and
subsequently to SAP or non-SAP applications

• Historical basis for archiving OLTP data from multiple source systems in BI (timeframe 5-7 years)

o storage of document version (actual version)

o exceptional and case-dependent: storage of change history (for example, order change
history)

Guidelines_for_Data_Warehouse_Layer.doc Page 6 07.08.2006

• Integration basis to integrate OLTP data from multiple source systems or components; in many
cases more than one layer of DataStore objects is necessary.

2.3 Modeling Examples

This section contains three modeling examples from BI Content of a DWH layer for transaction data.

2.3.1 Bank Analyzer

The data model comprises the data flow from the operational banking systems (for example, CML, AM) to an
analytical solution like the Bank Analyzer. The inbound and outbound data part of the DWH layer is modeled
using DataStore objects. This scenario emphasizes the integration and consolidation aspects of the DWH
concept.

© SAP AG 2003
© SAP AG 2001 BW - The Open Business Intelligence Platform/ J. Haupt / 1

CML
Extractor DataStore

object

FDB

Data Flow of Bank Analyzer Solution: Overall Picture

AM Extractor DataStore
object

U
pd

at
e

-B
AP

I

Data Warehouse Layer

BCA
FSBP
Third-
Party...

Bank Analyzer

Extraction Mapping, Consolidation Distribution

Standard StandardCustomer Specific
Business Content as Example

Implementation

DataStore
Objects

Figure 2 Data Flow of Bank Analyzer Solution in BI

In this example, the most important aspects of the DWH layer are:

• Integration of data from different operational finance systems for distribution to other applications
(integration basis function)

• Storage of consolidated data and consistent metadata in BI: retain cross-system integration of
system-dependent data (integration basis function)

• Data is distributed to subsequent non-BI data targets/analytical application, for example, Financial
Database (FDB) / Bank Analyzer (information hub function)

Guidelines_for_Data_Warehouse_Layer.doc Page 7 07.08.2006

2.3.2 SRM Global Spend Analysis

This scenario is used to analyze the expenditure of an affiliated group over all its companies and systems. A
typical system landscape can include more than one SAP back-end system and enterprise buyer systems
connected to a BI.

The data flow consists of invoice or purchase order data from the procurement systems (SRM or MM).
Different DataStore objects contain data for each document type at line-item level. The detailed data is
consolidated in a subsequent DataStore object. An InfoProvider designed for analytical reporting contains
data from all enterprise buyer and purchasing systems that feed the prelimary DataStore objects. This
scenario is an EDW example of a full-blown content model with DataStore objects.

In this example, the most important aspects of the DWH layer are:

• Integration of data from different procurement systems and the appliance of business rules accross
two layers of DataStore objects (integration basis functionality)

• 1st layer: data is stored with document line-item granularity with no business rule manipulations. The
delta method for the extractors is AIMD: after-image delta records with delete records; in the change
log table of the DataStore objects, you can trace the history of after-image records; during data
extraction, header and item data is combined into one OLTP structure.

• 2nd layer: flat-list operational reporting accross the whole purchasing process data at document level.
Calculations using business logic are applied to generate KPIs such as Delivery Time from Purchase
Order to Confirmation.

© SAP AG 2004

Example of Data Flow Modeling: Full-Blown

DataStore object : 0BBP_INV
item level

DWH Layer
Propagation:

Separate
DataStore object

for each
document type:
purchase order,

invoice,
confirmation

DataStore object : 0BBP_DS1
item level

InfoCube:
Global Spend
0BBP_C01 DWH Layer Process

Integration:
Consolidated master

data, amounts and values
-> flat list reporting with
component-independent

view

Architected Data Mart
Layer: Aggregated view –

no document level

DocGuid, DocItemGuid, ContractGuid,ContractItemGuid

Product, Vendor,
NetOrderValue,
NetInvoiceValue,
NetConfirmedValue,
DeliveryTimeVarian
ce…

Calculations: DeliveryTimeVariance, neg. Indicator for CreditMemo Val&Quan.,

KYFCalculations: PerfectPOs, PriceVariance, QuantityVariance

Product, Vendor,
Organisation,
Location, …KYFs

InvoiceGuid, InvoiceItemGuid,

Location,
vendor, product,
net invoice value,
invoice
quantity,…

DataStore object : 0BBP_PO
item level

POGuid, POItemGuid,

Location,
Vendor,
Product,

NetOrderValue,
OrderQuantity,
Requested Delivery
Date,…

Different SW components possible - EBP or R/3 Purchasing

Purchase OrderInvoice

DataStore object: 0BBP_CON
item level

DocGuid, DocItemGuid, ContractGuid,
ContractItemGuid

Confirmation

PO Values

D
ata

W
arehouse

Layer

Figure 3 Data Flow of Full-Blown Content Model

Guidelines_for_Data_Warehouse_Layer.doc Page 8 07.08.2006

2.3.3 CRM Sales Analysis

This scenario is an EDW example of a light-weighted content model with DataStore objects. That means
that it is not necessary to integrate data from heterogenous source systems and complex processes are not
required.

• Document header data and item data are extracted and stored with line-item granularity in DataStore
object 0CRM_SALO

• The data structure is slightly denormalized: document header data and item data are extracted using
one DataSource and are stored in one DataStore object

• Data is updated to the subsequent data mart InfoCube 0CSAL_C03 to enable OLAP analysis on the
aggregated data

© SAP AG 2004

Example of Data Flow Modeling: Light-Weighted

All DataSource
information is kept in
the DataStore object;
the actual document
version is stored

DataStore object:
Sales Orders
0CRM_SALO
item level

DataSource Sales Order Header and Items

InfoCube:
Sales Analysis
0CSAL_C03

Slight denormalization:
One DataSource for
document header and
item data

Versioning concept is
possible for
documents, for
example, keep actual
version and clearing
date

Data mart for OLAP
analysis

of aggregated data

Figure 4 Data Flow of a Light-Weighted Content Model

Guidelines_for_Data_Warehouse_Layer.doc Page 9 07.08.2006

3 Document-Type Data (Line Items) in DataStore Objects and
InfoCubes
The following table compares the usage of DataStore objects and InfoCubes as data storage objects in BI
systems. When should you load granular document-type data (line items) into a DataStore object and when
should you use an InfoCube?

© SAP AG 2004, Title of Presentation / Speaker Name / 1

Line Items in DataStore Objects and InfoCubes

No restrictionsTo update data to a DataStore object, the InfoSource
should have the technical field ‘0recordmode’; the
DataSource should not have the delta method ‘D’ or
‘E’

Prerequisites

Multidimensional reporting at a low level of granularity
(OLAP analysis)

Usage of InfoCube aggregates

Drill-through to line items (stored in the DataStore object)
using the report-report interface

Reporting at a high level of granularity, flat reporting

Number of query records is greatly restricted by
selecting qualified key fields

Display a single document

Reporting methods

Extended star schema (fact tables and dimension tables)Flat and relational database tables, semantic key
fields

Data structure in BI

Add onlyOverwrite/modify (in rare cases: add) Type of data upload

Non-volatile data

Aggregated data, totals records

Non-volatile data (when used in the data warehouse
layer)
Volatile data (when used in the operational data store
layer)

Transaction data, document-type data (line items)

Type of data

Aggregation and performance optimization for
multidimensional reporting

Analytic and strategic reporting

Unification and consolidation of data in the data
warehouse layer

Determination of (additive) delta records that can be
loaded into InfoCubes or master data tables in a
subsequent step

Operative reporting (when used in operational data
store layer)

Usage

InfoCubeDataStore object

Figure 5 DataStore Object Versus InfoCube for Line-Item Data

To summarize, it is recommend that you use DataStore objects to store document-type data (line items).
You can also use DataStore objects as buffer storage for flexibly staging master data InfoObjects. In BI
reporting, the key fields of the DataStore object should be filled before the DataStore object is read so that a
single document or a limited number of documents are displayed. You usually require (secondary) indexes to
access this subset of records so that you can avoid full table scans. You can define secondary indexes in
DataStore object maintainance. If large volumes of data are stored in the DataStore object, it is not
recommended that you run a complex analysis on the DataStore object for performance reasons. In a
complex (multidimensional) OLAP query based on an InfoCube, the report-report interface is used to access
the selected data for a single line item (stored in a DataStore object).

The InfoCube is suitable for storing data that is used in multidimensional OLAP queries. Since these queries
select a larger number of data records, aggregates should be defined (based on the InfoCube) for all
reporting-relevant questions. It is only recommended that you store line items in InfoCubes in exceptional
cases where multidimensional reporting is required at document level (for example, OLAP navigation with
respect to document number). In this case, the document number characteristic has to be defined within a
line-item dimension of the InfoCube. Storing mass data in InfoCubes at document level is generally not
recommended because when data is loaded, a huge SID table is created for the document number line-item
dimension.

Guidelines_for_Data_Warehouse_Layer.doc Page 10 07.08.2006

4 BI Data Models for Line Item and Header Information
Many document-type data models have a similar structure. In OLTP systems, for example, sales order,
purchase order, delivery note and so on all have structure:

Header data and item data tables

This section provides rough ideas and suggestions for the best way to extract document-type data into BI
and the most suitable BI data model. Four different BI data model scenarios are discussed. This section
ends with a comparison and an evaluation of the different scenarios (pros and cons).

4.1 BI Data Model Scenarios

© SAP AG 2003, Title of Presentation, Speaker Name / 1

Scenario 1: Header Data Look-Up

Document header data (DataSource 1) and document item data (DataSource 2) is extracted to BI
separately.
While document item data (DataStore object 2) is updated to a final data target, the corresponding
document header data is read (DataStore object 1). Therefore the extraction of document header and
item data should be bundled and serialized (header data before item data extraction) in one process
chain.
This scenario is appropriate if you need to consolidate two separate DataSources (i.e. two DataSources
that extract data from different application areas, for example, delivery and billings, production and
controlling) where these two DataSources do not have many common characteristics.

DataSource 1

Header Data

DataSource 2

Item Data

Read data in
DataStore
object 1

Final data target:
DataStore object
(or in exception
cases, InfoCube)

DataStore
Object 1

DataStore
Object 2

BI

OLTP

Figure 6 Header Data Look-Up

Guidelines_for_Data_Warehouse_Layer.doc Page 11 07.08.2006

© SAP AG 2003, Title of Presentation, Speaker Name / 1

Scenario 2: Slight Denormalization

A single DataSource combines document header and item data. Data is transferred to BI data targets
using one flat extract structure for both document header and item data.

This scenario is appropriate if you have two DataSources that are very closely connected, for
example, if the data extracted using DataSource 1 changes, the data extracted using DataSource 2 is
also likely to change.

A typical example is document header and document item DataSources: If the sales document is
changed, the data extracted by both DataSources is likely to change at the same time. In this case,
you can combine these two DataSource in one single DataSource in the OLTP system to ensure that
the data is consistent.

DataSource:
Document Header and Item Data

OLTP

BI

DataStore
Object

Figure 7 Slight Denormalization

Guidelines_for_Data_Warehouse_Layer.doc Page 12 07.08.2006

© SAP AG 2003, Title of Presentation, Speaker Name / 1

Scenario 2.1: Slight Denormalization (Incl. Header Data)

OLTP

BI

2005.04.2003101024711

1003.04.2003101014711

11.000,--101004711

Delivery
Quantity

Total Value
of Sales Doc.

Delivery
Date

Sales OrgDivisionItem
Number

Document
Number

Scenario 2.1 is the same approach as scenario 2: flatten document header and item data into one
extract structure.

If the document header contains header-specific key figures, for example, ‘total number of sales
document items’ or ‘total value of sales document’, this header information should be extracted as an
additional record with item number = 0.

Header
Data

Document key Header Data

DataStore
Object

Figure 8 Slight Denormalization with Header Data

Guidelines_for_Data_Warehouse_Layer.doc Page 13 07.08.2006

© SAP AG 2003, Title of Presentation, Speaker Name / 1

Scenario 2.2: Slight Denormalization Without Header Key Figure

OLTP

BI

2005.04.2003101024711

1003.04.2003101014711

Delivery
Quantity

Delivery
Date

Sales Org.DivisionPos.
Number

Doc.
Number

Scenario 2.2 is the same approach as scenario 2: flatten header and item data into one extract
structure.

If the document header contains characteristics only (for example, division, sales organization) and
does not contain header-specific key figures, these header characteristics should be extracted with the
respective document-item records.

Document Key Header Data

DataStore
Object

Figure 9 Slight Denormalization Without Header Key Figure

Guidelines_for_Data_Warehouse_Layer.doc Page 14 07.08.2006

© SAP AG 2003, Title of Presentation, Speaker Name / 1

Scenario 3: Header and Item Data Join Using InfoSet

InfoSet (Join)

Document header and item data is extracted to BI separately and is updated to two Datastore
objects. An InfoSet is defined based on these two Datastore objects and represents a join of the data
in both Datastore objects.

At query runtime for a query that uses this InfoSet, there is no mechanism that can guarantee that
document header data and item data are extracted into BI consistently. This scenario is appropriate
for test purposes where the volume of data is relatively small.

DataSource 1

Header Data

DataSource 2

Item Data

DataStore
Object 1

DataStore
Object 2

BI

OLTP

Figure 10 Header Data and Item Data Join Using an InfoSet

Guidelines_for_Data_Warehouse_Layer.doc Page 15 07.08.2006

© SAP AG 2003, Title of Presentation, Speaker Name / 1

Scenario 4: Document Header Modeled as Master Data Table

Final data target:
DataStore object
(or in exception
cases, InfoCube)

Docnum |Salesorg|Division

4711 | A | 10
4712 | B | 20

OLTP

BI

Document header data and item data are extracted to BI separately. The extraction of
header data and item data should be combined in one process chain.

Document header data is modeled as a master data table in BI, whereas document item
data is modeled as a DataStore object.

This scenario is appropriate for document header data that contains characteristics only
where you do not expect these header characteristics to change frequently.

DataSource 1

Header Data

DataSource 2

Item Data

Figure 11 Document Header Modeled as Master Data Table

Guidelines_for_Data_Warehouse_Layer.doc Page 16 07.08.2006

4.2 Comparison of Different Scenarios

© SAP AG 2003, Title of Presentation, Speaker Name / 1

Document-type Data: Comparison of the 4 Scenarios
Scenario 4:
Header as Master
Data
(Recommended in
limited cases)

Scenario 3:
Join Using InfoSet
(Not recommended)

Scenario 2:
Slight Denormalisation
(Recommended)

Scenario 1:
Header Data Look-Up
(Not recommended)

SimpleSimpleSimpleComplexComplexity of data
flow

Contra:
Implementation efforts on BI
side exceed those of
scenario 2.

Contra:
Implementation efforts on BI
side exceed those of scenario
2. An additional InfoSet and
join conditions have to be
modeled.

Pro:
Most easy to implement on BI
side. The major
implementation efforts are on
OLTP side.

Contra:
Implementation efforts on BI
side exceed those of scenario
2. An additional look-up of a
DataStore objects has to be
coded.

Flexibility
(development efforts)

Pro:
If errors occur, you can
determine on the BI side
whether the errors occur in
the document header data
or the item data, without
having to look in the OLTP
system.

Contra:
If errors occur, it is necessary
to analyze the OLAP process
in addition to the steps
mentioned for scenario 4 and
1.

Pro/contra:
If errors occur, it may be
necessary to look into the
OLTP system to find out
whether the errors occur in
the document header data or
the item data.

Pro:
If errors occur, you can
determine on the BI side
whether the errors occur in
the document header data or
the item data, without having
to look in the OLTP system.

Transparency of data

Pro/contra:
Header data and item data
are combined at query
runtime. Since the
document header data is
modeled as a master data
table, it can be modified.

Contra:
At query runtime for a query
that uses the InfoSet join, it is
possible that either the
header data or item data is
not yet extracted to BI. The
quality of the data is worse
than in scenario 4.

Pro:
The combination of item data
and header data (using one
DataSource) always delivers
the most up-to-date status of
the data. It is more accurate
and up-to-date than in
scenario 4.

Contra:
Once the header data is
staged into the final data
target it cannot be changed
unless all the data (header
and item data) is reloaded; if
the header data changes, the
changes cannot be applied
automatically.

Quality of data

(Consistency, up-to-
dateness)

Pro/contra:
Performance depends on
the size and complexity of
the master data table of the
document header

Contra:
Performance can be poor at
query runtime

Pro:
Good performance for data
staging and query runtime

Contra:
Updating the final data target
can be performance intensive
as another DataStore object
has to be read

Performance

Figure 12 Document-Type Data: Comparison of the Four Scenarios

4.3 General Recommendations
1. If two DataSources are very closely related they should be combined in a single DataSource in the OLTP

system with one flat extract structure. A typical example is the combination of document header and item
DataSources. When the document is changed, the changes are applied to both DataSources at the
same time. In this case scenario 2 is the appropriate data model.

2. If two separate DataSources do not extract data from one common application area (for example,
delivery and billings, production and controlling) and these two DataSources do not have common
characteristics, scenario 1 is the appropriate data model.

3. Scenario 4 is the appropriate data model if the volume of document data is relatively small and the
document header only contains characteristics.

4. Scenario 3 is the appropriate data model only if the volume of data is very limited. It should not be used
in a productive scenario. It can generally only be used if the mechanism that guarantees data
consistency (for example, that the appropriate header data and item data are available in BI when the
InfoSet is running) is provided using an additional process chain.

Guidelines_for_Data_Warehouse_Layer.doc Page 17 07.08.2006

5 Performance Aspects of the Data Warehouse Layer

5.1 Performance When Activating Data and the BEx Reporting Indicator

If the BEx Reporting indicator is set in DataStore object maintainance, SIDs are stored instead of
chararcteristic key values. This improves flexibility in reporting but slows down the activation of the DataStore
object.

The creation of SIDs is time-consuming and can be avoided in the following cases:

• Do not set the BEx Reporting indicator if you are not planning to report on DataStore objects in BEx or
on the Web. You should not set the BEx Reporting indicator if you intend to use the DataStore object as
a data store only.

• If your reporting requirements with regard to DataStore objects are limited (for example, you only want to
be able to display a few, selected records), use InfoSets on top of DataStore objects and deselect the
BEx Reporting indicator.

• If you are using line items (for example, document number, time stamp and so on) as characteristics in
the DataStore object, mark these as Attribute only in characteristics maintenance.

5.2 Unique Records in DataStore Objects

If you are only loading unique data records to the DataStore object (unique data records are data records
that have a unique key combination), you can improve load performance by setting the Unique data record
indicator in DataStore object maintenance.

If this indicator is set, the system does not look up existing key values and only performs (mass) inserts into
the active table of the DataStore object. Furthermore, the before-image can be omitted from the change log
and the data does not have to be sorted before the DataStore object is activated.

Note:

When you select the Unique data record indicator, BI cannot guarantee that all the data records are unique;
this has to be guaranteed externally (outside of the the BI system) by the extractor, for example. Otherwise
the BI system creates a short dump.

5.3 Indexes

If you filter special characteristics values within DataStore objects (for reporting or uploading into other data
targets), make sure that these characteristics are indexed so that you avoid full table scans on the DataStore
object tables. Secondary indexes accelarate the selective reading of data from an DataStore object. This
improves performance when you update data from the DataStore object to other data targets and when you
report on the DataStore object.

You define secondary indexes on the DataStore object maintainance screen.

Note:

If you define too many secondary indexes for one DataStore object, this has a negative impact on
performance during data update as all the secondary indexes have to be maintained during the load.

