
175 SAP AG

RFCSDK Guide
 S A P R e l e a s e 6 . 4 0

SAP SYSTEM

SAP® AG y Neurottstr. 16 y D-69190 Walldorf

 SAP RFCSDK Guide

 Copyright

© Copyright 2004 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are registered trademarks of Microsoft
Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex, MVS/ESA, AIX, S/390, AS/400,
OS/390, OS/400, iSeries, pSeries, xSeries, zSeries, z/OS, AFP, Intelligent Miner, WebSphere,
Netfinity, Tivoli, and Informix are trademarks or registered trademarks of IBM Corporation in the
United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are
trademarks or registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide
Web Consortium, Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and
services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world. All other
product and service names mentioned are the trademarks of their respective companies. Data
contained in this document serves informational purposes only. National product specifications
may vary.

These materials are subject to change without notice. These materials are provided by SAP AG
and its affiliated companies ("SAP Group") for informational purposes only, without
representation or warranty of any kind, and SAP Group shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP Group products and
services are those that are set forth in the express warranty statements accompanying such
products and services, if any. Nothing herein should be construed as constituting an additional
warranty.

Contents

Introduction…………….. .. 1
Basic knowledge………... 2
RFC Client Program…….. 4

Open a RFC-Connection .. 4
Connection to a R/3 System ... 5
Connection to an external RFC program .. 7
Call a RFC function….. ... 9
Blocking RFC Calls…….. 10
Unblocking RFC Calls…. .. 12
The RFC call-back mechanism for the client .. 13
RFC with SAPGUI……. ... 16
RFC using ABAP debugger ... 17
Close a RFC connection... 17

RFC Server Program….. .. 19
Accept a server connection ... 19
Registered RFC server….. 20
Started RFC server…….. 21
Performing a RFC function .. 21
Dispatching of RFC calls by the RFC Library ... 23
Dispatching of RFC calls by the RFC application ... 26
Performing a RFC function, data exchange and RFC exceptions.. 28
RFC call back mechanism for RFC server ... 28
Closing and aborting of accepted connections... 29

RFC Data Model…………... 31
Elementary data types.. 31
Arithmetical data types.. 31
Character-like data types .. 31
Strings………………….. 32
Raw data……………….. ... 35
Structured data………... 35
Early bound scenario…... 36
Late bound scenario….. 36
UNICODE Programs….. ... 36
Tables………………….. ... 37

Transactional RFC…….. .. 41
Transactional RFC between R/3 Systems .. 41
Transactional RFC between R/3 and External Systems ... 42
Transactional RFC Client Program ... 42
Obsolete tRFC API……. ... 42
Current tRFC API……… ... 43
The Sample Test Program ‘trfctest.c’.. 44
Transactional RFC Server Program .. 45
Implementation rules…. .. 45
Technical description (Within R/3 System) .. 46
Sequence diagram……... 47
The Sample Test Program ‘trfcserv.c’... 48

RFC Library and UNICODE ... 48
Special Features for EBCDIC-Based Systems.. 50

Writing multithreaded RFC applications ... 53
Technical Details…….. ... 53
Thread safe library on UNIX platforms.. 53
Compiling the SAP Interface……….. 54
Stack size……………… .. 58
Initialization…………….. ... 59
Closing RFC connection in multithreaded environment.. 60
Restrictions…………… ... 60

The saprfc.ini file………... 60
Type ’R’ entries………. ... 61
Type ’B’ entries……….. .. 62
Type ‘A’ entries………. ... 62
Type ‘2’ entries………. .. 63
Type ’E’ entries………... 63

RFC tracing mechanism.. 64
RFC and SAP-Router….. ... 65

RFC-Client Program and SAP-Router ... 65
Using Load Balancing…. .. 65
Connection to an explicit application host using default gateway... 66
Connection to an explicit application server using explicit gateway ... 66
RFC Server and SAP-Router.. 66
Registered RFC server and SAP-Router .. 66
RFC server started by a SAP gateway ... 67
RFC server started by SAPGUI .. 68

Used environment variables... 70

175 SAP AG

Icons in Body Text

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Additional icons are used in SAP Library documentation to help you identify different types of
information at a glance. For more information, see Help on Help → General Information
Classes and Information Classes for Business Information Warehouse on the first page of any
version of SAP Library.

Typographic Conventions

Type Style Description

Example text Words or characters quoted from the screen. These include field
names, screen titles, pushbuttons labels, menu names, menu paths,
and menu options.

Cross-references to other documentation.

Example text Emphasized words or phrases in body text, graphic titles, and table
titles.

EXAMPLE TEXT Technical names of system objects. These include report names,
program names, transaction codes, table names, and key concepts of a
programming language when they are surrounded by body text, for
example, SELECT and INCLUDE.

Example text Output on the screen. This includes file and directory names and their
paths, messages, names of variables and parameters, source text, and
names of installation, upgrade and database tools.

Example text Exact user entry. These are words or characters that you enter in the
system exactly as they appear in the documentation.

<Example text> Variable user entry. Angle brackets indicate that you replace these
words and characters with appropriate entries to make entries in the
system.

EXAMPLE TEXT Keys on the keyboard, for example, F2 or ENTER.

 SAP RFCSDK Guide

 SAP AG

Introduction

The RFC Library offers an interface to a R/3 system. The RFC library is the most
commonly used and installed component of existing SAP software. This interface
provides the opportunity to call any RFC function in a SAP system from an external
application. Moreover, the RFC Library offers the possibility to write a RFC server
program, which is accessible from any R/3 system or an external application. Most
R/3 connectors use the RFC library as communication platform to SAP systems.

SAP provides the RFC API in the form of C-routines, incorporated in the RFC-
Library. RFCSDK is available on all SAP supported platforms. RFCSDK contains:

• a platform specific RFC library,

• four platform independent header files (saprfc.h, sapitab.h, sapucx.h,
sapuc2.h),

• some sample RFC programs as srfctest.c, srfcserv.c etc.

The RFC library is forward and backward compatible, i.e., an older release of
the RFC Library can communicate with an R/3 system at a higher version and
vice versa.

The most important design features of the RFC Library are:

• Working with the native RFC protocol.

• Maximum functionality, i.e., almost all features of RFC in SAP R/3 systems
should be supported by the RFC Library too.

• Maximum performance.

• Maximum flexibility.

• Full compatibility to other RFC releases.

Naturally, this is sometimes at the expense of the usability of RFC API’s. But every
attempt to simplify the interface, will be at the expense of all the design goals
described above.

The RFC Library exists in a Unicode and non-Unicode version. Thus, the Unicode
RFC Library is forward, backward and sideward compatible, i.e., a current Unicode
RFC application can communicate with any non-Unicode RFC application
independently of its release and vice versa.

As expected by modern software, the RFC Library could be used in a multithreaded
environment. However, the RFC Library itself thread safe. This enables the user to
write powerful multithreaded RFC applications.

This Guide describes the current RFC Library Release 7.0.

Basic knowledge
The RFC client is the instance who calls the remote function module, which is
provided by a RFC server.

The RFC calls are accomplished via a RFC connection. Up to 100 (default value)
active RFC connections at a time are possible. This value can be changed by using
environment variable CPIC_MAX_CONV.

There are two types of RFC connections:

• Client connection.
 SAP RFCSDK Guide 2

 SAP AG

• Server connection. Sometimes the server connection is called accepted
connection.

A RFC handle represents a RFC connection. Technically a handle is an index of an
internal memory structure, which contains necessary information about given RFC
connections. A RFC handle is an instance of type RFC_HANDLE. There are two
kinds of RFC handles:

• Invalid RFC handle. This is either an RFC handle with value
RFC_HANDLE_NULL or an already closed or aborted RFC connection. It is
impossible to make any API call via this handle.

• Valid RFC handle. API calls have to be done by using a valid RFC handle.

A try to call any API-function with an invalid handle causes an error with return code
RFC_INVALID_HANDLE.

RfcGetAttributes API delivers the user relevant data describing a given RFC
connection.

During execution of an RFC function at the server side, it is sometimes useful to call
another RFC function in the original (client) system. For example, if one needs data
from the caller before continuing with the current RFC function. This behavior is
called call back feature in SAP jargon. The RFC server uses the same RFC
connection established by the client and calls a remote function at the client side. The
call back hit the same context in R/3 system. RFC Library supports a call back
mechanism for client and server. It is not necessary to open a new connection, i.e., the
same RFC handle will be used.

SAP RFCSDK Guide 3

 SAP AG

RFC Client Program
An external RFC client program calls a remote RFC function. The following steps
have to be conducted by an external RFC client:

1. Open an RFC-Connection. In this phase a valid RFC client handle will be
created.

2. Call one or more remote RFC functions.

3. Close or terminate an RFC connection. The valid RFC handle will invalidate. All
connection data is lost.

Open a RFC-Connection

To create a valid RFC client handle, it is necessary to establish a RFC connection to a
RFC partner. The following connection types are possible:

• Connection to a R/2-System

• Connection to a R/3 System

• Connection to an external RFC server

Every RFC connection will be established in two steps:

• Connection from a RFC program to a SAP gateway

• Connection from the SAP gateway to a RFC server

A connection to a remote RFC server has to be established via RfcOpenEx API-call.
This API takes as input parameter a zero terminated string with connection data and
returns a RFC handle. If the connection was successfully established, the handle is
valid. If the handle is returned, it is invalid and has the value RFC_HANDLE_NULL.

It is possible to precede the logon check during opening of a RFC connection.

To create a RFC connection the following data is needed:

• Connection data. This data is necessary to establish the connection to the RFC
server.

• Logon data (user identity, client and logon language). This data is used for
logon to the given R/3 system.

• Additional data. By using this data, some connection features can be
customized. For example, it is possible to turn the RFC trace on, start
SAPGUI to open time etc.

Abbreviator BAER2 (B - load Balancing, A - explicit Application server, E - External
RFC program, R - Registered RFC server, 2 - R/2 connection) could describe the
connection kinds.

The connection string has to have the following format: “ID=value ID=value
... ID=value”.

 RFC_HANDLE handle = RFC_HANDLE_NULL;
 RFC_ERROR_INFO_EX error_info_ex;
 rfc_char_t connect_string[] = “ … “;

 handle = RfcOpenEx (connect_string, &error_info_ex);

 SAP RFCSDK Guide 4

 SAP AG

 if (handle == RFC_HANDLE_NULL)
 {
 /* Connection could not be established
 ...
 }
 …

It is possible to only declare the data in the connection string. In this case all necessary
connection data is defined as input parameter of RfcOpenEx API.

Another way is to declare the data in the saprfc.ini file. To use the saprfc.ini file, the
connection parameter string must have the following entry: “DEST=<your destination
in saprfc.ini file>”. In this case the corresponding entries from the sapRFC.ini file will
be used to establish the connection.

A third possibility is to use the SAPLOGON data (this is available for Windows
platforms only). To use the connection data from sapmsg.ini file, the connection string
must have the following entry: “SAPLOGON_ID=<entry from saplogon> “.

Connection to a R/3 System

There are two types of connection to a R/3-System:

• Connection to an explicit application host

• Connection to a R/3 via Load Balancing

Connection to an explicit application server (Connection type A)

You remember that the connection to an external system is established in two steps
(connection to a SAP gateway and connection from a SAP gateway to a R/3 system).
To establish a connection to an explicit application server the following information is
needed:

• Application host name and system number. This information is mandatory.

• Gateway host name and gateway services. This information is optional. The
default is the local gateway on the application server itself.

The gateway options are useful if the gateway is running on a different host. Another
host could be located in another network with a different network card and could have
a differing IP-address.

The data can be assigned:

• Either via a connection string using the following entries: “… TYPE=3
ASHOST=<host name of application server> SYSNR=<R/3
system number> GWHOST=<optional: gateway host;
default: local gateway on application server>
GWSERV=<optional: gateway service; default: local
gateway on application server> …”.

• Or via following entries in saprfc.ini file for corresponding destination:

DEST = ...
TYPE = A
ASHOST=<host name of application server>
SYSNR=<R/3 system number>
GWHOST=<optional: gateway host; default: local
gateway on application server> GWSERV=<optional:
gateway service; default: local gateway on application server>.

SAP RFCSDK Guide 5

 SAP AG

The host name and service name of the specific application server have to be defined
in ‘host’ and ‘service’ files. The service name for the application server has to be
defined as follows:

 <service name>=sapdp<R/3 system number>.

The host name and service name of the SAP gateway have to be defined in the ‘host’
and ‘service’ files. The service name for the SAP gateway has to be defined as
follows:

 <service name>=sapgw<R/3 system number>.

Please notice: If GWHOST and GWSERV are not used (this is optional), the service
name of the SAP gateway has to be defined in the ‘service’ files anymore.

Load balancing feature (Connection type B)

It is possible to connect to a R/3 system via “Load Balancing” feature. This
functionality enables the user to connect to an application server with the minimum
load within a group of predefined application servers. This feature has the following
advantages:

• The load in a R/3 system is distributed among different application servers

• The application server will be determined at run time. In this case, the RFC
connection is independent of a specific RFC server. This improves the
flexibility of your RFC application

• Only host name and port number of the R/3 message server will be made
known in your system.

To establish a connection to a R/3 system via Load Balancing the following
information is necessary:

• Message Server host name. This information is optional. If no information
about host name of message server is available, RFC library tries to retrieve
this information from sapmsg.ini file according given system name. The
sapmsg.ini file is usually used by SAP-GUI. If the SAPGUI is not installed on
your system, you may copy the sapmsg.ini into your working directory or into
Windows-Directory (MS-Windows platforms only) manually.

• Message Server services. This information is optional. Default is sapms<R/3
system name>.

• System name. This information is mandatory.

• Application servers group name. This information is optional. The default is
the group ‘PUBLIC’.

Please notice: The data could be assigned:

• Either via connection string with following entries: “ … TYPE=3
MSHOST=<message server host name> R3NAME=<system name>
MSSERV=<message server service> GROUP=<group of application servers>
…”.

Or via the following entries in the saprfc.ini file for the corresponding
destination:

 SAP RFCSDK Guide 6

 SAP AG

DEST= …
TYPE=B
MSHOST=<message server host name>
R3NAME=<system name>
GROUP=<group of application servers; optional, default ‘PUBLIC’>

The host name and service name of the message server have to be defined in the
‘hosts’ and ‘services’ files. The service name has to be defined as follows:

<service name>=sapms<R/3 system name>.

The connection string has to have the following entries:

“TYPE=3 MSHOST=<message server host name> R3NAME=<system name>
GROUP=<group of application servers> …”

Logon data

To log on a SAP system the user has to be initialized. The following logon data is
needed:

• Client. This entry describes the client in the connect string: CLIENT=000

• Language. Entry describes the logon language has the format: LANG=<ISO-
Language>.

• User identity information

The user can be identified via:

• Username and password. Format is: USER=<user name>
PASSWD=<password>

• Mysapsso2 certificate. In this case password is not required and user name is
optional.

• X509 certificate.

• EXTID data.

Connection to an external RFC program

Sometimes it is useful to write both, RFC client and server program, as external
programs and let them to communicate with each other via a SAP gateway. The RFC
Library supports this option too. The RFC server program can be started by a SAP
gateway or it can use a registering feature

Connection to an external program started by a SAP gateway

The RFC client has to open the connection of type ‘E’. For successful build up of the
connection the following information is needed:

• Gateway data: gateway host name and service names,

• Host name of the rfc server program,

• Name of the rfc server program.

This data could be delivered to RfcOpenEx:

SAP RFCSDK Guide 7

 SAP AG

• Either directly via entries in connection string: “… TYPE=E
GWHOST=<gateway host> GWSERV=<gateway service name>
TPHOST=<host name of rfc server> TPNAME=<name of the rfc server
program> …”

• Or via entries in saprfc.ini file for corresponding destination:
DEST= …
TYPE=E
GWHOST=<gateway host>
GWSERV=<gateway service name>
TPHOST=<host name of rfc server>
TPNAME=<name of the rfc server program>

Connection to a registered RFC server

To establish a RFC connection to an external registered RFC server, the RFC client
has to open a connection of type ‘R’. The following data is needed:

• Gateway data: gateway host name and gateway service name

• Program Id of the external RFC server.

This data could be assigned:

• Either directly via entries in the connection string: “… TYPE=E
GWHOST=<gateway host> GWSERV=<gateway service name>
TPNAME=<program Id of RFC server program> …”

• Or via entries in the saprfc.ini file for the corresponding destination:
DEST= …
TYPE=R
GWHOST=<gateway host>
GWSERV=<gateway service name>
PROGID=<program Id of RFC server program>

Please notice: If an external RFC client communicates with an external server, which
runs in registered mode, the RFC client has to close the connection and reconnect the
RFC server after each RFC function call. If this is not done, the behavior is undefined.
This behavior is based on the following background:

• The registering feature of an external rfc server has been designed to allow the
multi-client functionality. This means that an external server may be able to
serve several requests from different clients simultaneously.

• To enable this, closes external rfc server after each rfc call the connection to the
client. The connection will be closed independent of the client’s kind (external
or R/3-system). In case of an ABAP-Program the connection at the client side
will be reestablished automatically by the ABAP/RFC-Runtime. In contrast
external RFC-Client program has to reestablish the connection explicitly via
RfcOpenEx-API.

It is possible to create a special rfc connection to an external registered server. This
connection kind is called explicitly bound server. In this case the external server is
able to server only request from a once client and the connection is not closed after
each rfc request. Of course the external rfc server is not able to server request from
another clients until the connection is explicitly bound. How to do it, is closely
described in the Chapter 0.

 SAP RFCSDK Guide 8

 SAP AG

Call a RFC function

There are four kinds of results of an RFC-call:

1. Successful. In this case exporting data and tables were transported to remote
system and the local system received the importing data and tables.

2. Exception. In this case the callee (remote system) raised an application
exception. This means that:

• The exporting data has been transferred to the remote system.

• Remote function raised an application exception.

• Exception has been transferred to the caller.

• The importing data was not transferred to caller (local system).

• RFC connection is not closed.

3. System Exception. A system exception was raised by runtime. Connection is
closed.

4. Failure. Call unsuccessful. Connection is closed. No warranty for data
transport neither to remote system nor from remote system.

Important: Every call of any RFC function has to be conducted via a valid RFC
handle. It is recommended to call RfcClose after each failure of an RFC call.

A RFC call can be performed as blocked or unblocked call. The blocked call waits
until the called ABAP/4 function module is finished on the server side before it
returns to the program. By an unblocked call one has the possibility to execute some
code at client side at the same time the ABAP/4 function module is execute on the
server.

It follows a flow diagram showing the basic structure of a RFC client program.

SAP RFCSDK Guide 9

 SAP AG

Open a RFC connection

RfcOpenEx()

Call a function and receive the

return values in one step

RfcCallReceiveEx()

Call an ABAP/4 function module

RfcCallEx()

Listen for incoming RFC events

RfcListen()

Receive the return values

RfcReceive()

Close the RFC connection

RfcClose()

succeed

Return value
RFC_RENTRY

RFC_OK

yes

no

Return value

RFC_OK

else

Return value

RFC_OK

else

Return value

RFC_OK

else

Error handling

Get error information

RfcLastErrorEx()

else

unblocked RFC calls blocked RFC calls

Flow diagram for a RFC client program without call-back.

Blocking RFC Calls

The API RfcCallReceiveEx implements the whole part of an RFC call, i.e., the
exporting and changing data are already sent to the RFC server and importing and
changing data are already received if the API returns.

Example:
int main (itn argc, rfc_char_t ** argv)
{
 RFC_HANDLE handle;
 RFC_RC rfc_rc;
 RFC_ERROR_INFO_EX error_info_ex;
 rfc_char_t * exception = NULL;

 SAP RFCSDK Guide 10

 SAP AG

 rfc_char_t function_name[] = “ABC”;
 RFC_PARAMETER importing[2],
 exporting[2],
 changing[2];
 RFC_TABLES tables[2];
 RFC_INT value1;

 handle = RfcOpenEx (« « , &error_info_ex);

 if (handle == RFC_HANDLE_NULL)
 {
 /* Could not establish an rfc connection */
 ...
 return 1;
 }

 importing[0].name = “VALUE1”
 importing[0].nlen = strlen (importing[0]. name);
 importing[0].type = RFCTYPE_INT;
 importing[0].addr = &value1;
 importing[0].size = sizeof (value1);

 importing[1].name = NULL;

 rfc_rc = RfcCallReceiveEx (handle, function_name,
 importing, exporting,
 changing, tables,
&exception);

 if (rfc_rc == RFC_EXCEPTION)
 {
 /* Catch an application exception.
 No data were transported. Rfc connection
is not closed. */
 printf (“Exception raised: %s\n”, exception);

 }
 else if(rfc_rc == RFC_SYS_EXCEPTION)
 {
 /* System exception raised. No data were transported.
 Connection is closed by rfc runtime. */
 printf (“System Exception raised: %s\n”, exception);
 printf (“RFC connection closed by runtime\n”);
 }
 else if(rfc_rc != RFC_OK)
 {
 /* An error occurred */
 RfcClose (handle);
 ...

SAP RFCSDK Guide 11

 SAP AG

 return 1;
 }

 ...
 RfcClose (handle);
}

Unblocking RFC Calls

Sometimes a RFC call is very long. In this case, the waiting for the answer takes a lot
of time. In the meantime the caller could do some work. To do this, it is necessary to
split the RFC call into three components:

• RfcCallEx – sends exporting and changing parameters to RFC buffer. The data is not
really sent to the RFC server with the RfcCallEx call. The data is only marshalled
(serialized) and put into the RFC buffer. The success of RfcCallEx means, that the
marshalling (serialization) of data was successful. Only after RfcListen or
RfcReceiveEx are called, the data will be sent to the server.

• RfcListen – sends the data to a server from the RFC buffer (remember RfcCallEx
does not send data to a server over a network) and checks whether the imported data is
received from the server. This call returns immediately and delivers the information,
whether an event has occurred. An event can be an error, or data is received, or
nothing happened. This call enables useful waiting. It is possible to do some work
until the data to be imported is received from the server. If the event “data received”
has occurred, RfcReceiveEx has to be used for receiving RFC data.

• RfcReceiveEx – sends data from the RFC buffer to the RFC server (remember
RfcCallEx does not send data to a server over a network) and receives importing and
changing parameters from the server. This API blocks until a result is received from
the RFC server.

The use of RfcCallEx and RfcReceiveEx without RfcListen is technically possible but
rather useless!

Example:
 ...
 rfc_rc = RfcCallEx (handle, function_name,
 exporting, changing, tables);

 do {
 /* While waiting for next incoming RFC call,
 do some useful things. */

 rfc_rc = RfcListen (handle);
 } while (rfc_rc == RFC_RETRY);

 if (RFC_RC != RFC_OK)
 {
 /* An error occurred */
 RfcClose (handle);
 return 1;
 }

 SAP RFCSDK Guide 12

 SAP AG

 rfc_rc = RfcReceiveEx (handle, importing,
 changing, tables,
 &exception);
 if (rfc_rc != RFC_OK)
 {
 /* An error or an exception occurred */
 RfcClose (handle);
 return 1;
 }

...

The RFC call-back mechanism for the client

The following example demonstrates the call back handling by the RFC client:

The RFC client calls a remote function ‘ABC’. The ‘ABC’ function makes a call
(back) and calls ‘XYZ’ function implemented by the client.

int main ()
{
 ...
 /* install call back function */
 RfcInstallFunction (“XYZ”, xyz_function);

 handle = RfcOpenEx (...);

 rfc_rc = RfcCallReceiveEx (handle, ABC, ...);

 if (rfc_rc == RFC_CALL)
 {
 rfc_rc = RfcDispatch ();

 if (rfc_rc != RFC_OK)
 {
 /* An error occurred */
 RfcClose (handle);
 return 1;
 }

 rfc_rc = RfcReceiveEx (...);
 }

 ...
 RfcClose (handle);
 return 0;
}

static RFC_RC SAP_API xyz_function (RFC_HANDLE handle)
{
 RFC_RC rfc_rc;
 rfc_rc = RfcGetData (handle, ...);

 ...
 rfc_rc = RfcSendData (handle, ...);

SAP RFCSDK Guide 13

 SAP AG

 return rfc_rc;
}

It is also possible to perform a call-back in an unblocked RFC call. The two
possibilities are shown in the next diagrams.

 SAP RFCSDK Guide 14

 SAP AG

Open a RFC connection

RfcOpenEx()

Call a function and receive the

return values in one step

RfcCallReceiveEx()

Close the RFC connection

RfcClose()

succeed

Error handling

Return value

Register function as callable

RfcInstallfunction()

Wait for the next function call

RfcDispatch()

Receive the return values

RfcReceive()

Return value

RFC_OK

RFC_CALL

RFC_OK

else

else

yes

no

Return value

RFC_OK

else

Get error information

RfcLastErrorEx()

SAP RFCSDK Guide 15

 SAP AG

Open a RFC connection

RfcOpenEx()

Call an ABAP/4 function module

RfcCallEx()

Listen for incoming RFC events

RfcListen()

Wait for the next function call

RfcDispatch()

Close the RFC connection

RfcClose()

succeed

Return value
RFC_RENTRY

RFC_OK

Register function as callable

RfcInstallfunction()

yes

no

Return value
RFC_OK

else

Return value

RFC_OK

else

RFC_CALL

Receive the return values

RfcReceive()

Return value

RFC_OK

else

Error handling

Get error information

RfcLastErrorEx()

else

Detailed flow diagrams for blocked and unblocked RFC calls with call-back
mechanism.

RFC with SAPGUI

It is possible for an external RFC client program to call ABAP/4 function modules,
which are using ‘DYNPROS’ or SAP Graphics. An external RFC client is able to
call complete SAP transactions. For using this functionality, it is necessary, that
SAPGUI has already been started before the function module with DYNPROS is
called by the external client. SAPGUI has to be started by an external program.

An external RFC client program can start the SAPGUI with one of the three following
options:

• By using the RfcOpenEx API call. When the RfcOpenEx API returns the
SAPGUI will already be active. To do this, please insert the following ID value

 SAP RFCSDK Guide 16

 SAP AG

pair: USE_SAPGUI=1 or USE_SAPGUI=2 to connect_string. The content
USE_SAPGUI=0 means that SAPGUI should not be started at open time.

• Call of function module ‘SYSTEM_ATTACH_GUI’ in R/3. This feature
provides the function to start the SAPGUI at any time. To start the SAPGUI,
the external RFC client has to call function module
‘SYSTEM_ATTACH_GUI’ in R/3 without any parameters before using the
SAPGUI functionality.

• Using sapRFC.ini file. In this case the SAPGUI will be started at open time
too. To do this please define an entry in ‘saprfc.ini’ file for a corresponding
destination as follows: USE_SAPGUI=1 or USE_SAPGUI=2. The entry
USE_SAPGUI=0 suppresses the start of SAPGUI at open time.

RFC using ABAP debugger

The full functionality of the ABAP/4 debugger can be used while developing or
testing an external RFC client application. For using this functionality, it is necessary
to have a SAPGUI installed at the client side.

An external RFC client can use this helpful feature with one of the following options:

• Using RfcOpenEx API. Insert the following ID=value pair:
ABAP_DEBUG=1 to connection description. The entry ABAP_DEBUG=0
suppresses the entering into the ABAP debugging mode for its connection
(default).

• Using saprfc.ini file. It is possible to define an entry in ‘saprfc.ini’ file for a
corresponding destination as follows: ABAP_DEBUG=1. With the entry
ABAP_DEBUG=0 the ABAP debugger will not be used (default).

• Setting environment variable RFC_DEBUG. If the environment variable
RFC_DEBUG is set to value unless 0, then all calls to R/3 systems will enter
the debugging mode.

Close a RFC connection

The used connection has to be closed as soon as possible to free internal memory.
Normally, a RFC client connection is closed via RfcClose API. The RfcClose API
should be called after each failed RFC call too. This is necessary in order that all
internally used control areas (except internal tables) are released. After the RfcClose
order the RFC handle is invalid, i.e., it is impossible to make any API call using this
handle.

Please notice:

• RfcClose is only able to destroy the connection .

• RfcClose with RFC_HANDLE_NULL as parameter closes all Client-RFC
connections. RfcClose (RFC_HANDLE_NULL) only closes the handles, which
were last active in the same thread of the calling program.

• In case of extern-extern communication with a registered RFC server, the client
connection has to be closed after every RFC call.

 Example using RfcClose API:
...
RFC_HANDLE handle;
handle = RfcOpenEx (...);
...

SAP RFCSDK Guide 17

 SAP AG

/* Close a specific RFC connection */
RfcClose (handle);
/ * Close all by this thread established connections
 * Connections created by another thread are not closed
*/
RfcClose(RFC_HANDLE_NULL);
...

 SAP RFCSDK Guide 18

 SAP AG

RFC Server Program
A RFC server program implements functions, which can be called by a RFC client.
The following steps have to be accomplished by the RFC server:

• Establish a server connection. In this phase a valid server handle will be
created. Furthermore, an RFC server handle will be called accepted handle
and the RFC server connection will be called accepted connection.

• Wait for incoming RFC calls and perform RFC functions, which were called by
an RFC client. The same connection can handle several RFC requests.

• Close or abort the RFC connection. The valid RFC handle will be invalidate.
All connection data is lost.

RFCSDK conations program srfcserv.c. This program can be used as an example for a
RFC server.

Accept a server connection

To establish a server connection, the RFC server should call RfcAccept or
RfcAcceptExt API. The delivered handle is a valid accepted handle. The both
API’s RfcAccept and RfcAcceptExt differ only in the input parameters format. The
functionality of the both API’s is the same.

Example
int main (int argc, rfc_char_t ** argv)
{
 RFC_HANDLE handle = RFC_HANDLE_NULL;
 RFC_HANDLE handle2 = RFC_HANDLE_NULL;

 handle = RfcAccept (argv);
 if (handle == RFC_HANDLE_NULL)
 {
 RFC_ERROR_INFO_EX error_info;
 RfcLastErrorEx (&error_info);
 ...
 }
 ...

 handle2 = RfcAcceptExt (“-aedi –gbinmain –xsapgw53”);
 if (handle2 == RFC_HANDLE_NULL)
 {
 RFC_ERROR_INFO_EX error_info;
 RfcLastErrorEx (&error_info);
 ...
 }
 ...

 RfcClose (handle);
 RfcClose (handle2);
}

SAP RFCSDK Guide 19

 SAP AG

Important: If RfcAccept fails (returns RFC_HANDLE_NULL), it is necessary to
call RfcLastErrorEx API. If the RfcLastErrorEx is not called after each failure of
RfcAccept, a memory leak of ca. 16000 bytes will be caused for each unsuccessful
RfcAccept.

A RFC server program can run in two modes:

• Registered server. This server will be started before a client makes the first
call and registers itself by an SAP gateway. A registered RFC server could be
considered as a demon process (UNIX) or a service (MS-Windows). After
registering at the SAP gateway the server is waiting for incoming calls from
any RFC client. This behavior enables the server to serve rfc request from
different clients simultaneously i.e. registered server is a multi-client server.

• Started RFC server. This server will be started during opening the RFC
connection by a client and processes incoming RFC calls until the client closes
this connection. The server connection stays alive until:

o the user context on the ABAP-side exists i.e. the ABAP-report made the
remote function call ends or an ABAP-transaction which made the remote
function call ends (for example with PF3)

o or external client closes the rfc connection. The started rfc server is able to
serve the requests only from rfc client, which opened the connection to this
server.

It is impossible to access to started rfc server from different clients
simultaneously i.e. started rfc server is a single-client server.

Registered RFC server

The RFC server program can be registered at the SAP gateway with Program ID and
then wait for incoming RFC requests. This feature has the following properties:

• A RFC server program registers itself at a SAP gateway under a Program-ID
and not for a specific SAP system.

• A RFC server program can be registered several times under the same ID at the
same Gateway. The incoming RFC request will be propagated to one of the
registered program. This allows the writing of powerful multithreaded or multi-
processed RFC server programs. Of course the synchronization problem has to
be solved by the server program.

• After each executed RFC function the accepted connection will be closed.

• It is possible to bind an rfc client to an explicit registered server. Until this
connection kind is active, the server is not available for another rfc clients.

The following connection data is needed to establish an accepted RFC connection:

• Program Id

• SAP gateway name and gateway services.

As already described above, an accepted connection will be established via API
RfcAccept. There are two ways to define the input parameter 'argv' of
RfcAccept or connection string for RfcAcceptExt to register a RFC
connection at a SAP gateway:

• Indirect working with the 'saprfc.ini' file and the corresponding destination.
In this case the argv argument of RfcAccept contains only a reference to a

 SAP RFCSDK Guide 20

 SAP AG

destination in the saprfc.ini file. All connection data will be read from the
saprfc.ini file.

• Direct without the 'saprfc.ini' file. In this case all connection data will be
transferred via the argv argument of RfcAccept.

To declare a connection to a registered server as explicitly bound, the client (extern
or R/3) should call the RFC-function RFC_SET_REG_SERVER_PROPERTY
with export parameter EXCLUSIVE = ‘Y’. The effect of this call is that external
registered server is explicitly available for the caller until:

• the RFC-client calls RFC_SET_REG_SERVER_PROPERTY with export
parameter:

• either with EXCLUSIVE = ‘N’ i.e. stop exclusivity

• or with EXCLUSIVE = ‘E’ i.e. disconnect

• rfc connection is closed by the client.

After an inactive phase, a registered RFC Server can no longer be accessed. After an
RFC Server has registered on an SAP gateway, RFC functions without any problems.
Nevertheless, after a lengthy inactive period, this RFC Server may no longer be
accessible. For example, the connection test from SM59 terminates with an error. In
transaction SMGW, however, this server is still displayed as registered with the status
WAITING.

Depending on the TCP/IP implementation and configuration, a TCP/IP connection can
be closed after an inactive period without the related TCP/IP application
(NI/CPIC/RFC shift) being informed. This phenomenon mostly occurs when a
firewall is set between the registered server and the SAP Gateway.

To get around the problem mentioned above, as of an internal communication step is
implemented every five minutes between the RFC library and the SAP Gateway, in
case the RFC Server does not receive an RFC request within this period the
RfcWaitForRequest or RfcDispatch in the RFC Server is being used.

By setting environment variable RFC_MAX_REG_IDLE=<sec>, the default value of
300 seconds can be changed. Please do not set this value too low. If the value of this
environment variable is -1, no communication will take place between the registered
server and the gateway during RfcDispatch.

Started RFC server

A RFC server can be started by:

• A SAP gateway.

• By the currently used SAPGUI.

• By a R/3 application server.

The starter of the server will generate the connection parameters and transfer them to
the program via the argv argument of main. This data should be transferred without
any changes to RfcAccept.

Performing a RFC function

The performing of a RFC function is carried out in two steps:

• Dispatching of RFC calls to corresponding function implementations. In this
step the function name will be determined and a corresponding function body
will be called.

SAP RFCSDK Guide 21

 SAP AG

• Performing of a RFC call. This step receives importing and changing
parameters, processes the function body and eventually sends the exporting and
changing parameter to the client. A call back can be performed during the
execution of the functions body. In this case the existing accepted connection
will be used for the call back.

An incoming RFC request can be dispatched:

• Either by the RFC Library, using RfcDispatch API;

• Or by the RFC application itself, using RfcGetName API.

The dispatching of RFC requests should be done in a loop:

• Connection test can be performed only for RFC servers implemented with
execution of dispatcher function (RfcDispatch or RfcGetName) in a loop.

• As explained above, a registered RFC connection will be closed automatically
after each executed RFC call. If an RFC server works with an RfcDispatch or
RfcGetName in a loop, this server will be automatically registered again at the
same gateway under the same program ID. This will be done invisible for the
API caller.

The basic structure of a server program is shown in next diagram.

Accepts an incoming connection

RfcAccept()

succeed

yes

no

Return value

Read the called function name

RfcGetName()

Dispatch the call
use RfcGetData() and RfcSendData()

to exchange data with the caller

RFC_OK

Close the RFC connection

RfcClose()
Error handling

Get error information

RfcLastErrorEx()

automatic dispatch manual dispatch

Register function as callable

RfcInstallfunction()

Wait for the next function call

RfcDispatch()

Return value
RFC_OK

else

Flow diagram for a RFC server program.

 SAP RFCSDK Guide 22

 SAP AG

Dispatching of RFC calls by the RFC Library

To enable the dispatching of incoming RFC calls, the RFC server should be informed
about all available RFC functions implemented by this RFC server. This should be
done via RfcInstallFunction API.

After installing of the supported RFC functions, the RFC server can wait for incoming
requests and dispatch them to installed functions. This is done using RfcDispatch
API. As rule this API should be called in a loop in order that the same or even other
installed functions can be called by an RFC client application (independent of the fact
if it is an R/3 system or an another external application).

Instead of waiting for the next RFC requests blocking in RfcDispatch, the RFC server
program can inform itself, whether an RFC requests was incoming via RfcListen API.
RfcListen returns immediately and informs the caller whether an RFC request has
been received or not. In this case, the RFC server does something useful, until
RfcListen tells that there is an RFC request incoming. If RfcListen has detected an
RFC requests, this request should be dispatched and performed by RfcDispatch API as
usual.

The RFC Library can only dispatch installed functions. A request for a function not
installed will be aborted showing an error message. To avoid automatic abort of RFC
requests for non-installed functions, it is possible to install a global handler for this
error situation. The RFC library will call this function if an RFC request is received
and there is no function installed for this. In this specific function, the RFC server can
use RfcGetName to get the requested function name and then dispatch for it. This
functionality must be used if you are working with transactional RFC and you don't
want to work with RfcDispatch but RfcGetName. The handler will be installed via
RfcInstallFunction API as a usual RFC function with name
“%%USER_GLOBAL_SERVER”.

SAP RFCSDK Guide 23

 SAP AG

Accepts an incoming connection

RfcAccept()

Close the RFC connection

RfcClose()

succeed

Error handling

Return value

Register function as callable

RfcInstallFunction()

Wait for the next function call

RfcDispatch()

Return value

RFC_OK

RFC_RENTRY

RFC_OK

else

yes

no

Listen for incoming RFC events

RfcListen()

Wait for incoming RFC events

RfcWaitForRequest()

Return value

(Only available for server in register mode)

RFC_RENTRY

RFC_OK

Get error information

RfcLastErrorEx()

else

else

Flow diagram for a RFC server program dispatching explicit installed functions.

Example RFC server working only with RfcDispatch

The following example shows a RFC server program working with RfcDispatch:

static abc_function (RFC_HANDLE);

int main (int argc, rfc_char_t ** argv)
{
 RFC_HANDLE handle;
 RFC_RC rfc_rc;

 /* Establish an accepted connection */
 handle = RfcAccept (argv);
 if (handle == RFC_HANDLE_NULL)

 SAP RFCSDK Guide 24

 SAP AG

 {
 /* Connection could not be established */
 RFC_ERROR_INFO_EX error_info;
 RfcLastErrorEx (&error_info);
 return 1;
 }

 /* Install RFC function ABC and its implementation */
 rfc_rc = RfcInstallFunction (“ABC”, abc_function);
 if (rfc_rc != RFC_OK)
 {
 /* Could not install a server function */
 return 1;
 }

 /* Wait for an RFC call and execute one of installed
rfc functions
 until the connection is terminated */
 do {
 rfc_rc = RfcDispatch (handle);
 } while (rfc_rc == RFC_OK);

 /* Close connection */
 RfcClose (handle);
 return 0;
}

Example RFC server working with RfcListen and RfcDispatch

The following example shows a RFC server program working with RfcListen and
RfcDispatch:

static abc_function (RFC_HANDLE);

int main (int argc, rfc_char_t ** argv)
{
 RFC_HANDLE handle;
 RFC_RC rfc_rc;

 /* establish an accepted connection */
 handle = RfcAccept (argv);
 if (handle == RFC_HANDLE_NULL)
 {
 /* Connection could not be established */
 RFC_ERROR_INFO_EX error_info;
 RfcLastErrorEx (&error_info);
 return 1;

SAP RFCSDK Guide 25

 }

 SAP AG

 /* Install RFC function ABC and its implementation */
 rfc_rc = RfcInstallFunction (“ABC”, abc_function);

 if (rfc_rc != RFC_OK)
 {
 /* Could not install a server function */
 RfcClose (handle);
 return 1;
 }

 /* Wait for an RFC call. While waiting, do something
useful.
 If an RFC call is incoming, execute one of installed
RFC functions.
 Perform above steps, until the connection is
terminated. */
 do {
 do {
 /* While waiting for next incoming RFC call,
 do some useful things. */
 rfc_rc = RfcListen (handle);
 } while (rfc_rc == RFC_RETRY);

 rfc_rc = RfcDispatch (handle);
 } while (rfc_rc == RFC_OK);

 /* Close connection */
 RfcClose (handle);
 return 0;
}

Dispatching of RFC calls by the RFC application

Alternatively a RFC server program can use RfcGetName API to identify the name
of the called RFC function and then dispatch the call. The following example
demonstrates the use of RfcGetName API:

 ...
 handle = RfcAccept (argv);
 ...

 /* Get function name directly and start it */
 do {
 rfc_rc = RfcGetName (handle, function_name);

 if (rfc_rc == RFC_OK)
 {
 if (strcmp (“ABC”, function_name))

 SAP RFCSDK Guide 26

 SAP AG

 {
 rfc_rc = abc_function (handle);
 }
 else
 {
 /* RfcAbort closes the connection */
 RfcAbort (handle, "RFC function %s is not\
 implemented in this server program");
 }
 }
 else /* error occurred */
 {
 return 1;
 }
 } while (rfc_rc == RFC_OK || rfc_rc ==
RFC_SYSTEM_CALLED);

 RfcClose (handle);
 ...

It follows a detailed flow diagram showing the possibilities by manual dispatching.

Accepts an incoming connection

RfcAccept()

Close the RFC connection

RfcClose()

succeed

Error handling

Return value

Dispatch the call manually
use RfcGetData() and RfcSendData()

to exchange data with the caller

RFC_OK

RFC_SYSTEM_CALLED

else

yes

no

Read the called function name

RfcGetName()

Read the called function name

and return to the RFC program

RfcGetNameEx()

Return value

RFC_OK

Get error information

RfcLastErrorEx()

else

unblock requestblock request

SAP RFCSDK Guide 27

 SAP AG

Flow diagram for a RFC sever program dispatching the RFC call manually.

Performing a RFC function, data exchange and RFC exceptions

The performing of a RFC server function can be divided into the following parts:

• Receiving of importing, changing parameters and tables

• Logical part.

• A call back to the client using the accepted connection can be done if
necessary.

• Sending of exporting, changing parameters and tables to the caller.

• Instead of sending data to a client an application exception can be raised by an
RFC server on behalf of the RFC user.

The receiving of data should be done using RfcGetData API. RfcSendData API
should be used for sending the data.

Please notice:

• In RFC functions, offered by a RFC server program, all importing, exporting
parameters and also all internal tables must be defined, before RfcGetData is
issued. Nevertheless, it is not necessary to use ItCreate API for internal
tables. The RFC library will do this automatically. After an RFC function is
ended the RFC library will free the storage for all used internal tables in this
function.

• RFC server with changing parameter should use the same name in RfcGetData
and RfcSendData for corresponding importing and exporting parameter values.

Instead of RfcSendData an external RFC server can call RfcRaiseTables API to
raise an RFC exception. In this case the RFC client should catch this exception as
required. This API throws an exception and does not close the existing RFC
connection.

Important: An application exception is not an error. Your RFC-Function should
not return RFC_FAILURE after RfcRaiseTables but return code delivered by
RfcRaiseTables (in most cases RFC_OK).

RFC call back mechanism for RFC server

The following example demonstrates the call back handling by the RFC server:

The RFC server provides the remote function ‘ABC’. The ‘ABC’ function makes a
call back and calls ‘XYZ’ function implemented by the client.

int main (int argc, rfc_char_t ** argv)
{
 RFC_HANDLE handle = RFC_HANDLE_NULL;
 RFC_RC rfc_rc = RFC_OK;
 handle = RfcAccept (argv);

 if (handle == RFC_HANDLE_NULL)
 {
 RFC_ERROR_INFO_EX error_info;
 RfcLastErrorEx (error_info);
 return 1;

 SAP RFCSDK Guide 28

 SAP AG

 }

 rfc_rc = RfcInstallFunction (“ABC”, abc_function);
 if (rfc_rc != RFC_OK)
 {
 RfcClose (handle);
 return 1;
 }

 do {
 rfc_rc = RfcDispatch (handle);
 }(rfc_rc == RFC_OK)

RfcClose (handle);
return 0;
}

static RFC_RC abc_function (RFC_HANDLE handle)
{
 RFC_RC rfc_rc = RFC_OK;

 rfc_rc = RfcGetData (handle, ...);

 /* Call back ‘XYZ’ */
 rfc_rc = RfcCallReceiveEx (handle, ...);

 if (noExceptionRequired)
 {
 rfc_rc = RfcSendData (handle, ...);
 }
 else
 {
 rfc_rc = RfcRaiseTables (handle, ...);

 }

 return rfc_rc;
}

Closing and aborting of accepted connections

The accepted connection can be regularly closed with RfcClose API. If RfcClose is
called with RFC_HANDLE_NULL as parameter, all existing client connections will
close. The RfcClose API has to be called after each failed RFC call, in order to release
all internally used control areas (except internal tables). The use of RfcClose is as
described in the client section of this paper.

Additionally a RFC server can use API RfcAbort to terminate an accepted
connection at any time. RfcAbort is done by RFC runtime only if the thread that
created the connection calls RfcAbort. If RfcAbort is called from another thread, the
call is ignored.

SAP RFCSDK Guide 29

 SAP AG

An error text can be passed to the RFC partner via this API. The error text is then
available for the partner as a ABAP Error Message. RfcAbort closes the existing
connection.

Example using RfcAbort API:

static RFC_RC abc_function (RFC_HANDLE handle)
{
 RFC_RC rfc_rc;
 rfc_rc = RfcGetData (handle,...);

 if (rfc_rc != RFC_OK)
 {
 return RFC_RC;
 }

 ...
 if (<some condition>)
 {
 RfcAbort (handle, “Could not proceed message”);
 return RFC_FAILURE;
 }

 ...
 rfc_rc = RfcSendData (handle, ...);

 return rfc_rc;
}

 SAP RFCSDK Guide 30

 SAP AG

RFC Data Model
The RFC library supports the following data types:

• Scalar data types. Elementary data types like characters, arrays of characters,
date, time, integer, float etc. On top of that, the RFC Library supports flat
structures, based on these elementary data types. This kind of data type is called
a scalar data type.

• Tables of scalar data. The RFC library supports tables of scalar elements too.

There is no support for complex structures and tables of them.

To ship the data to a RFC partner the data description is needed. The metadata will be
defined via an instance of RFC_PARAMETER structures for scalar data and
RFC_TABLE structure for tables. Following information is needed for every scalar
parameter:

• Parameter name and the length of the name in characters.

• Type of parameter (native or installed).

• Reference (pointer) to the corresponding memory area.

• The maximal memory size reserved for the corresponding memory area.

The metadata will never be transferred to any RFC partner. The RFC data will be sent
as described by the sender. The received data will be handled by the receiver as
described. If the data description is different for server and client, the data will handle
different (according the given description) at every side.

Elementary data types

Arithmetical data types

These are the least complex data types. The RFC library automatically converts the
arithmetical data from the internal sender format into the internal receiver format. For
example, during a RFC conversation between an NT-System and a RS6000 system, a
Big-Endian integer will be converted into Little-Endian format and vice versa.
The arithmetical data types are:

• RFCTYPE_INT

• RFCTYPE_FLOAT

• RFCTYPE_BCD.

Character-like data types

This data is either a character or an array of characters. The RFC Library supports the
following character-like data types:

• RFCTYPE_CHAR

• Array of characters

• RFCTYPE_DATE

• RFCTYPE_NUM

• RFCTYPE_TIME

The RFC Library automatically converts every received character from the sender
codepage into the receiver codepage. For every RFC connection, independent or

SAP RFCSDK Guide 31

 SAP AG

accepted client, the RFC Library determines the codepage. If no codepage has been
defined by the RFC application, the default codepage will be used for every RFC
connection. The default code pages are as follows:

• For the 1 byte character size the default codepage is 1100 on ASCII systems
(windows, Unix) and 0110 on the EBCDIC platforms (AS400).

• For the 2 byte character size (Unicode) the default is either 4103 or 4102.

The default codepage can be (re-) set by:

• Either by the environment variable SAP_CODEPAGE,

• Or using RFC API RfcSetSystemCodepage.

It is possible to set codepage for a client connection. The codepage for a client
connection could be set

• Either at open time using the entry CODEPAGE=<your codepage> in the
connection string for the RfcOpenEx API. Example:

RfcOpenEx (“… CODEPAGE=8000 …”,…) ;

• Or at run time for a valid RFC handle using RFC API RfcSetCodepage.
Example:

RfcSetCodepage (handle, “8000”);

The path to the conversion table should be defined by the environment variable
PATH_TO_CODEPAGE.

Strings

Almost all types of data have a constant length, i.e., it is possible to reserve enough
memory to store the received data. Strings are data which length is variable, i.e., it is
impossible to determine at receiver side, which length the received string will have.
The RFC Library automatically allocates enough memory for the received string. The
user of the RFC Library should allocate only the memory for sending strings.

Please note: The RFC Library allocates the memory for received strings but does not
free them. To avoid memory leaks, the user should free the memory allocated for
strings.

The RFC Library supports two types of strings:

• Character String. These are zero terminated Utf8 encoded character strings.

• XString. These are raw data strings.

Character Strings

This data type has a variable length and is similar to the ABAP/4 data type string. The
difference is that the RFC_STRING is a zero terminated, but the ABAP/4 string is
blank padded. The conversion between zero terminated Utf8 (extern RFC program)
and blank padded (ABAP) is done automatically by the RFC engine. All strings are to
be handled by the respective sending and receiving external programs as UTF8 zero
terminated strings.

Please note: The RFC Library does not convert RFC_STRINGS into Utf8 format, but
expects, that strings already have Utf8 format.

The following example demonstrates the string handling:

 SAP RFCSDK Guide 32

 SAP AG

 RFC_STRING question,
 answer;
 RFC_RC rfc_rc;
 RFC_PARAMETER exporting[2],
 importing[2];
 RFC_TABLE tables[1];
 rfc_char_t exception[512];
 rfc_char_t * except_ptr = exception;

 /* Allocate only export parameter
 * The rfc library will do Allocation of import
parameter */
 question = RfcAllocString (11);
 /* allocates 12 bytes and fills them with Null’s */

 strncpy (question, "How are you", 11); // we are UTF8

 exporting[0].name = "QUESTION";
 exporting[0].nlen = strlen (exporting[0].name);
 exporting[0].type = RFCTYPE_STRING;
 exporting[0].addr = &question;
 exporting[0].leng = strlen (question);
 /* does not matter the value, because RFC lib
restores this
 * value from .addr field using strlen () */
 exporting[1].name = NULL;

 importing[0].name = "MYANSWER";
 importing[0].nlen = strlen (importing[0].name);
 importing[0].type = RFCTYPE_STRING;
 importing[0].addr = &answer;
 importing[0].leng = 0;
 /* you do not know how long is the received string
 * The value of the field will be set by the RFC
library */

 importing[1].name = NULL;
 tables[0].name = NULL

 rfc_rc = RfcCallReceiveEx (handle, "STFC_STRING",
 exporting, importing,
NULL,
 tables, &except_ptr);

 ...

 // Free both import and export strings to avoid
memory leaks

SAP RFCSDK Guide 33

 SAP AG

 RfcFreeString (question);
 RfcFreeString (answer);

Raw strings or XStrings

The following Example demonstrates the handling of XStrings in a RFC program:

 RFC_XSTRING question,
 answer;
 RFC_RC rfc_rc;
 RFC_PARAMETER exporting[2],
 importing[2];
 RFC_TABLE tables[1];
 rfc_char_t exception[512];
 rfc_char_t * except_ptr = exception;

// initialise xstrings
 question.content = NULL;
 question.length = 0;

 answer.content = NULL,
 answer.length = 0;

/* Allocate only export parameter
 * The rfc library will do Allocation of import

parameter */
RfcResizeXString (&question, 2000);

 exporting[0].name = "QUESTION";

exporting[0].nlen = strlen (exporting[0].name);
exporting[0].type = RFCTYPE_XSTRING;
exporting[0].addr = &question;
exporting[0].leng = question.length;
/* does not matter the value, because rfc lib

restores
 * this value from RFC_XSTRING.length field of the
data type. */

exporting[1].name = NULL;

 importing[0].name = "MYANSWER";
 importing[0].nlen = strlen (importing[0].name);
 importing[0].type = RFCTYPE_XSTRING;
 importing[0].addr = &answer;
 importing[0].leng = 0;
 /* does not matter the value, because rfc lib
restores

 SAP RFCSDK Guide 34

 SAP AG

 * this value from RFC_XSTRING.length field of the
data type. */

 importing[1].name = NULL;
 tables[0].name = NULL

 rfc_rc = RfcCallReceiveEx (handle, "STFC_XSTRING",
 exporting, importing,
NULL,
 tables, &except_ptr);
 ...
 /* Free both import and export xstrings to avoid
memory leaks */
 RfcResizeXString (&question, 0);
 RfcResizeXString (&answer, 0);

Raw data

Raw data is never converted. Supported are bytes and array of bytes.

RFC_PARAMETER param[3];
RFC_BYTE byte,
 array_of_bytes[10];

param[0].name = ”...”;
param[0].nlen = strlen(param[0].name);
param[0].type = RFCTYPE_BYTE;
param[0].addr = &byte;
param[0].leng = sizeof(byte);

param[1].name = ”...”;
param[1].nlen = strlen(param[1].name);
param[1].type = RFCTYPE_BYTE;
param[1].addr = &array_of_bytes;
param[1].leng = sizeof(array_of_bytes);

param[2].name = NULL;

Structured data

A structured data type has to be installed via the RfcInstallStructure API.
This API returns a new data type handle. The use of structured data types handle is the
same as for the elementary data types. They are used in the fields type from the
structures RFC_PARAMETER and RFC_TABLE. RfcCallReceiveEx,
RfcCallEx, RfcReceiveEx, RfcGetData, and RfcSendData uses
this type handles to marshal/unmarshal the data. The layout of the data, (the data
pointed by RFC_PARAMETER.addr, or passed by the It*() functions is the exact
memory layout of the corresponding structure in the ABAP VM. The offsets are the

SAP RFCSDK Guide 35

 SAP AG

same on all platforms, the endianess is always the native endianess of the local
machine.

There are two scenarios:

• Early bound scenarios that use generated structure descriptions at compile
time,

• Late bound scenarios that dynamically retrieve the structure layout from the
attached Web Application Server.

Early bound scenario

Please us the tool genh that can be found in the …./rfcsdk/bin or …\rfcsdk\bin\
directory. This tools generate on standard out an header that contains a) a typedef
for a ‘C’ description from the structure, and b) an array of RFC_TYPE_ELEMENT for
use with RfcInstallStructure.

Sample call:
genh ashost=appserv sysnr=00 client=001 user=myuser passwd=mypass
SOME_STRUC

genh ashost=appserv sysnr=00 client=001 user=myuser passwd=mypass
SOME_STRUC > some_struc.h

Late bound scenario

The raw list of fields that contributes to a structure is not sufficient to compute the
memory layout that the Web Application Server uses. If some fields have been
included via .INCLUDE statement in the Data Dictionary, or if one of the field is
itself a structure then those substructure may introduce an unexpected layout that
cannot be computed out of the raw list of fields an there type. For this reason, the
RFC_TYPE_ELEMENT array generated by the tool genh sometime contains dummy
fields of type RFCTYPE_PADDING that are used to enforce the correct layout. Since
most late bound programs uses the function module
RFC_GET_STRUCTURE_DEFINITION and/or DDIF_FIELDINFO_GET this
programs would have to compute this dummy fields by themselves. The easier
solution is to use RfcInstallStructure2 that conveniently takes an
RFC_TYPE_ELEMENT2 array shaped like the return table of
RFC_GET_STRUCTURE_DEFINITION.

UNICODE Programs

When an ASCII program communicates with an UNICODE partner, the UNICODE
partner is responsible for both; the UNICODE <-> ASCII/MBCS conversion and the
transformation between UNICODE systems and ASCII/MBCS memory layout. So
that ASCII programs are not affected by the fact that the peer is an UNICODE system.
They can continue to use RfcInstallStructure or
RfcInstallStructure2.

The user of RfcInstallStructure2 however must be careful that the function module
RFC_GET_STRUCTURE_DEFINITION of a UNICODE Web Application Server
returns the UNICODE memory layout. The recommended solutions are: either call
the function module DDIF_FIELDINFO_GET passing the value “01” to the
parameter UCLEN an then call RfcInstallStructure2. or call the function
module RFC_GET_UNICODE_STRUCTURE and call
RfcInstallUnicodeStructure().

 SAP RFCSDK Guide 36

 SAP AG

When a UNICODE program communicates with a UNICODE partner, it must use the
UNICODE memory layout for marshalling/unmarshalling. But it must use the
ASCII/MBCS memory layout when communicating with an ASCII/MBCS peer.
Thus, UNICODE programs must inform the RFC-Library about both memory layouts.
The UNICODE program uses RfcInstallUnicodeStructure for this.
RfcInstallStructure and RfcInstallStructure2 cannot be used in
UNICODE programs. Late bounds program may use one call to the function module
RFC_GET_UNICODE_STRUCTURE or two calls to DDIF_FIELDINFO_GET to
retrieves the information needed to call RfcInstallUnicodeStructure. Early
bound programs should use genh-Tool to generate an array of
RFC_UNICODE_TYPE_ELEMENT.

Tables

RFCSDK contains functions, which allow the processing of ABAP/4 internal tables in
a C environment. ABAP/4 internal tables follow the model of a relational database
table.

ABAP/4 internal tables consist of type identical rows. If created, a table is yet empty.
In ABAP/4 you can fill rows into a table by the statements 'Insert' or 'Append'. You
can access a row by 'Read Table' and you can delete a row by 'Delete'. You can free a
Table by 'Free Table' and you can retrieve information about tables by 'Describe'.
These language constructs correspond to the following C routines:

• ItCreate - creates a new internal table.

• ItAppLine - appends a line (row) to an internal table.

• ItInsLine - inserts a line into the given position.

• ItDelLine - deletes a line.

• ItGetLine - reads a line.

• ItGupLine - reads a line for update.

• ItFree - resets an internal table to initial state.

• ItDelete - deletes (frees) a complete table.

• ItFill - returns the number of lines in a table.

• ItLeng - returns the width of a table, i.e., the size of a row
of the

 table.

The following example demonstrates table handling in a RFC Client:

static void display_table(ITAB_H itab_h);
static void fill_table(ITAB_H itab_h, int table_leng);

int main (int argc, rfc_char_t ** argv)
{
 RFC_TABLE tables[3]; /* Working with one
internal table */

 RfcEnvironment(...); /* Install error handling
function */

SAP RFCSDK Guide 37

 SAP AG

 /* Open RFC connection */
 rfc_handle = RfcOpenEx(...);

 if (rfc_handle == RFC_HANDLE_NULL) /* Check
return code*/
 {
 ...
 return 1;
 }

 tables[0].name = “ITAB1000”; /* Must fit with
definition
 in SAP-FM */
 tables[0].nlen = 8; /* Length of name
 */
 tables[0].type = TYPEC; /* Only character
 */
 tables[0].leng = 1000; /* Length of a table line
 */
 tables[0].itmode = RFC_ITMODE_BYREFERENCE; /*
Recommended*/
 /* Allocate storage for internal table */
 tables[0].ithandle = ItCreate(…);

 tables[1].name = “ETAB1000”; /* Must fit with
definition
 in SAP-FM */
 tables[1].nlen = 8; /* Length of name
 */
 tables[1].type = TYPEC; /* Only character
 */
 tables[1].leng = 1000; /* Length of a table line
 */
 tables[1].itmode = RFC_ITMODE_BYREFERENCE; /*
Recommended*/
 /* Allocate storage for internal table */
 tables[0].ithandle = ItCreate(…);

 tables[2].name = NULL;

 if (tables[0].ithandle = ITAB_NULL)/* Check success
 */
 {
 ...
 return 1;
 }

 SAP RFCSDK Guide 38

 SAP AG

 /* Fill internal table with 10 lines text */
 fill_table (table[0].ithandle, 10);

/* Call up function module with the filled table */
rfc_rc = RfcCallReceiveEx(handle, ...);

if (rfc_rc != RFC_OK) /* Check return code*/

 {
...
return 1;

 }

 RfcClose (...); /* Close RFC connection */
 display_table (table[1].ithandle);
 ItDelete (…); /* Free storage of intern tables */

 return 0;
}

/* Fill internal table with text “This is a test” as
requested */
static void fill_table(ITAB_H itab_h, int table_leng)
{
 int linenr; /* Actual line number in
table */
 int lineleng; /* Length of a table line
 */
 rfc_char_t * ptr; /* Pointer to a table line
 */
 rfc_char_t table_data[] = “This is a test”;

 if (table_leng == 0)
 {

return; /* Table with no entry */
 }

 /* Determine length of a table line */
 lineleng = ItLeng(itab_h);

 /* Fill table as requested */
 for (linenr = 1; linenr <= table_leng; linenr++)
 {
 /* Get address of next line */
 ptr = (char *) ItAppLine(itab_h);

 if (ptr == NULL) /* Check return code */
 {
 /* Output error message and die hard */

SAP RFCSDK Guide 39

 SAP AG

 printf(“\nMemory insufficient\n”);
 exit(1);
 }
 /* Transfer data to internal table */
 memcpy (ptr, table_data, lineleng);
 }

 return;
}

/* Output received internal table on screen */
static void display_table(ITAB_H itab_h)
{
 int linenr; /* Actual line number in
table */
 int lineleng; /* Length of a table line
 */
 rfc_char_t * ptr; /* Pointer to a table line */
 rfc_char_t table_data[8193];/* Max. length of a int.
table */

 /* Get length of a table line*/
 lineleng = ItLeng(itab_h);

 /* Loop at internal table */
 for (linenr = 1; ; linenr++)
 {
 /* Get address of next line */
 ptr = (char *) ItGetLine(itab_h);
 if (ptr == NULL)
 {
 /* End of table reached */
 break;
 }

 /* Read a table line into buffer */
 memcpy(table_data, ptr, lineleng);

 /* Set string end in buffer for output */
 table_data[lineleng] = ‘\0’;

 /* Ouput on screen */
 printf(“’%s’\n”, table_data);
 }

 return;
}

 SAP RFCSDK Guide 40

 SAP AG

Transactional RFC
A RFC client program (ABAP or external program) will normally answer the call of a
RFC function if a network error (CPI-C error) is returned by this call. If the network
error occurred through calling a RFC function, it is necessary to repeat this action. But
if this network error occurred during, or at the end of the execution of an RFC
function, the RFC function may already be successfully executed.

In both cases the RFC-component in SAP systems, or the RFC library will have the
same CPI-C error code from the CPI-C layer.

To run this RFC call again is not always correct because it will execute the required
RFC function once more!

By using a R/3 system, the RFC data can be transferred between two R/3 systems
reliably and safely via transactional Remote Function Call (It was renamed from
asynchronous RFC to transactional RFC because asynchronous RFC has a different
meaning in R/3 systems).

This ensures that the called function module(s) will be executed exactly once in the
RFC server system. Moreover, the RFC server system or the RFC server program
needn’t be available at the time when the RFC client program is doing tRFC.

Transactional RFC between R/3 Systems

A transaction, also known as Logical Unit of Work (LUW), begins with the first ‘Call
Function … In Background Task’ and ends with ‘Commit Work’ in an ABAP
program. A transaction can include one or more RFC calls as follows (ABAP coding):

CALL FUNCTION ‘F1’ ….. IN BACKGROUND TASK.
…..
CALL FUNCTION ‘Fn’ ….. IN BACKGROUND TASK.
…..
COMMIT WORK.

With each ‘Call Function … In Background Task’ the tRFC-component will store the
being called RFC function together with the according data in the SAP database.

Only after ‘Commit Work’ the tRFC-component tries to pass on these data together
with a Transaction Identifier (TID), which is unique worldwide (also on different R/3
systems) to the R/3 server system.

The tRFC-components in both systems communicate with each other in two phases:

• Function shipping. All RFC functions together with the according data and the
TID will be transferred to the RFC server system. If CPI-C error occurred
during this phase the transfer will be repeated by the tRFC-component in the
client system (The number of tries and the time between two tries can be
defined with sm59). The R/3 server system uses the TID to check whether the
transaction with this TID has been transferred and executed. The tRFC-
component in server system informs the client system about the successful
execution of this transaction.

• Confirmation. The tRFC-component in the client system sends a confirmation
to the client system and both systems can delete the entry for this TID in their
own TID-management. The confirmation will not be repeated even if a CPIC
error occurs in this phase. Therefore, the TID-management can grow up if
working within a bad network.

SAP RFCSDK Guide 41

 SAP AG

The transaction is completely ended after this second phase.

Transactional RFC between R/3 and External Systems

On external systems, the transactional RFC cannot be fully implemented in the RFC
library because of the following reasons:

• A database is not always available in external systems.

• The RFC library cannot always repeat the RFC call in the event of an error such
as a network error.

Therefore, the transactional RFC interfaces from external systems to an R/3 is
currently implemented as follows:

• RFC library. The RFC library provides some special RFC calls such as
RfcCreateTransID, RfcIndirectCall, RfcIndirectCallEx, RfcConfirmTransID
and RfcInstallTransactionControl for working with tRFC and will convert data
between the RFC and the tRFC format. For a R/3 system, there is no difference,
whether these calls are requested from another R/3 system or from an external
system. For an RFC server program, the RFC function itself (only the RFC
function, not the whole RFC server program) can be executed normally such as
it is called via ‘normal’ RFC (with RfcGetData and RfcSendData). RFC client
programs and RFC server programs Both programs have to manage the TID’s
themselves in order to check and execute the requested RFC functions exactly
once, just as the tRFC-component in a R/3 system does.

• R/3 systems. In R/3 systems, there are no additional changes necessary to
ABAP programs working with external RFC programs using the tRFC-
Interface. For ABAP programs as the RFC client program, the destination
defined in CALL FUNCTION …. must have ‘T’ as connection type.

Transactional RFC Client Program

In contrast to tRFC between R/3 systems, a transaction from an RFC client program
contains only one RFC function.

There are two different ways to make a tRFC call.

Obsolete tRFC API

After connecting to a R/3 system (via RfcOpenEx), a RFC client program must use
the two following RFC calls in order to be able to work with the tRFC-Interface:

• RfcCreateTransID. With this call, the RFC-Library tries to get a TID created
by the R/3 system. In the case of an error, the RFC client program has to
reconnect later and must try to repeat this call. Otherwise, the RFC client
program can assign this TID with the RFC data and if the next RFC call is
unsuccessful, it can be repeated later.

• RfcIndirectCall. With this call, the RFC library will pack all RFC data
belonging to a RFC function together with the TID and sends them to the R/3
system using the tRFC protocol. If an error occurs, the RFC client program has
to reconnect later and must try to repeat the call. In this case, it has to use the
old TID and must not get a new TID with RfcCreateTransID. Otherwise, it is
not guaranteed that this RFC function will be executed exactly once in R/3
system. After a successful execution of this call, the transaction is completely
terminated. The RFC client program can then update its own TID-management
(e.g. delete the TID-entry).

 SAP RFCSDK Guide 42

 SAP AG

Current tRFC API

RfcIndirectCallEx and RfcConfirmTransID represents the new interface for tRFC
client.

With RfcIndirectCall, the RFC client can have a problem with the ‘exactly once’-
functionality because if the RFC client has broken down before it can update its own
TID management, it will try to call the according RFC function once more. To avoid
this error, the RFC library from 4.0C onwards supports two new calls:
RfcIndirectCallEx and RfcConfirmTransID.

The RFC client must update the TID as ‘executed’ before it issues
RfcConfirmTransID. Because the tRFC server will delete the TID in its TID
management after the RfcConfirmTransID is executed, the RFC client can recall the
RFC function with RfcIndirectCallEx at any time before RfcConfirmTransID. The
tRFC server will or will not call the RFC function depending on the state of this TID.

The basic structure of a tRFC client program is shown in the following diagrams. See
the delivered program trfctest.c for more details.

Open a RFC connection

RfcOpenEx()

Call an ABAP/4 function module

using transactional RFC

RfcIndirectCallEx()

Confirm a transactional RFC call

RfcConfirmTransID()

Close the RFC connection

RfcClose()

succeed

Return value

RFC_OK

Get a unique transaction ID

RfcCreateTransID()

yes

no

RFC_OK

else

Error handling

Get error information

RfcLastErrorEx()

else

Return value

Return value

RFC_OK

else

Flow diagram for a tRFC client program.

SAP RFCSDK Guide 43

 SAP AG

R/3
system

Client
system

RFC
Library

RfcOpenEx()

RfcCreateTransID()

RfcClose()

Get transaction ID

Function
ABC()

Call function ‘ABC’

RfcConfirmTransID()
Update (delete) TID

RfcIndirectCallEx(‘ABC’)

start client
program

Sequence diagram for a tRFC connection between a non R/3 client system and a R/3
server.

The Sample Test Program ‘trfctest.c’

The C-program trfctest.c, delivered with the RFC SDK (executable and source code)
is a tRFC client program as an example. To get connected to a R/3 system, a
‘saprfc.ini’ file is needed. Data to transfer to R/3 via tRFC must be in a file. The file
name must be defined by starting this program. Each line in this file is one line in an
internal table. Only one internal table with 72 B line length is used. Received data in
R/3 will be written in the TCPIC-table in an R/3 system (only the first 40 bytes) and
the function module STFC_WRITE_TO_TCPIC will be activated. It uses the file I/O
on the running platform for management the TID’s. For each TID there is an entry in
the TID-management which contains the date and time, the TID itself, the state of this
transaction (CREATED, CONFIRMED, …), and the name of the data file. It is
possible to interrupt the execution of the program (for example with ^C) to simulate
error cases. Anytime, when this program is started it will look at the TID-management
for aborted transactions. If any exists, it will first try to re-run these transactions. Since
this program can run on different platforms an according flag (SAPonUNIX,
SAPonNT, …) must be set if you want to compile and link this program to your
environment.

See source code for more details.

 SAP RFCSDK Guide 44

 SAP AG

Transactional RFC Server Program

Implementation rules

After being connected to a R/3 system (via RfcAccept) and having installed the
supported RFC functions, the RFC server program has to use the RFC call
RfcInstallTransactionControl to work with the TID´s to check and execute the real
RFC functions it supports before entering in the loop with RfcDispatch.

This function installs the following 4 functions (e.g. C-routines) to control the
transactional behavior:

• onCheckTid. This function will be activated if a transactional RFC is called
from an R/3 system. The current TID has been handed over to the function. The
function has to store this TID in permanent storage and return 0. If the same
TID will be called later again, it must return a value <> 0. If the same TID has
already been started by another process, but is not completed, the function has
to wait until the transaction is completed, or the user can stop the RFC
connection with RfcAbort.

• onCommit. This function will be called, if all RFC functions, which belong to
this transaction, are done and the local transaction can be completed. It should
be used to locally commit the transaction, if working with database.

• onRollback. This function is called instead of the second function (onCommit),
if there occurs an error in the RFC library while processing the local
transaction. This function can be used to roll back the local transaction
(working with database).

• onConfirmTid. This function will be called if the local transaction is
completed. All information about this TID can be deleted.

Pay Attention:

• These four functions must be realized in any tRFC server program and are
independent to the real RFC function offered in a RFC server program. A
server program can offer more than 1 RFC function but only 4 functions above
and not 4 functions for each RFC function.

• To guarantee that each tRFC function will only be processed once, install all 4
functions.

Error handling. RFC differs between application and system failures. TRFC calls are
asynchronous calls to the back end and the application exception could never be
provided back to the caller. This is the reason to throw only system failures in all
tRFC-function modules. The client may repeat the call because there was only a
system error and the repetition of the call may be successful. This approach does not
make any sense if the application throws any application failure (exception).
Accordingly the repetition of the call with the same parameter will never succeed.

Important:

• Throw a system exception using RfcAbort. In this case the onRollback function
will be called. And the caller will be informed, that the calls failed. The
message will be provided to the caller. The tRFC-Server connection will be
closed and RfcDispatch returns RFC_CLOSED.

• Never throw application exception i.e. you should not call RfcRaiseTables in
your tRFC-Server.

SAP RFCSDK Guide 45

 SAP AG

Technical description (Within R/3 System)

SAP System

 ...
 CALL FUNCTION ‘ABC’
 DESTINATION ‘Dest’
 IN BACKGROUND TASK

 ...

 COMMIT WORK

 ...

Put RFC data in database

Try to send RFC data
to RFC server system.
(data in tRFC-format)

ABAP program

tRFC-component

The following parameters can be configured using transaction sm59:

• try or do not try to connect to a RFC server program in the case of an error

• how many times consumed for trying

• the time between two tries.

Program location ‘User’ defined in sm59 (start RFC server program via currently
using SAPGUI) is not available because the tRFC-component is not assigned to any
SAPGUI while running.

The transaction sm58 shows the running state of a transaction (if the transaction has
not already been successfully executed).

The next two diagrams show the basic structure of a tRFC connection between a R/3
client and a external server.

 SAP RFCSDK Guide 46

 SAP AG

 start client program

R/3 system
tRFC client

tRFC server
program

RFC
Library

start server

RfcAccept()

RfcInstallTransactionControl

RfcInstallFunction(‘ABC’)

Wait for function calls

RfcClose()

Check and update TID

COMMIT WORK

Function
ABC()

Call function ‘ABC’

Function
OnCheckTID()

Update and commit database

Update (delete) TID

Function
OnCommitTID()

Function
OnConfirmTID()

CALL FUNCTION ‘ABC’
 IN BACKGROUND TASK

Sequence diagram

Please have a look to the following sequence diagram for a tRFC connection between
a R/3 client and an external server.

SAP RFCSDK Guide 47

 SAP AG

Accepts an incoming connection

RfcAccept()

succeed

Error handling

Register function as callable

RfcInstallFunction()

yes

no

Get error information

RfcLastErrorEx()

Register functions to control the

transactional behavior

RfcInstallTransactionControl()

Wait for the next function call

RfcDispatch()

Return value
RFC_OK

else

Close the RFC connection

RfcClose()

Control functions

Check and update TID

Update TID and commit database

Update TID and rollback database

Update (delete) TID

Flow diagram for a tRFC server program.

The Sample Test Program ‘trfcserv.c’

The C-programs trfcserv.c, delivered in form of executable and source code with the
RFC SDK, is a tRFC server program serving as an example. The ABAP program
SRFCTEST can be used to test with this server program. Received data from R/3 will
be written in the ‘trnn…n.dat’ on the running platform. Each line in this file is one line
in an internal table. Only one internal table with 72 B line length is used. It uses the
file I/O on the running platform for management the TID’s. For each TID there is an
entry in the TID-management, which contains the date and time, the TID itself, the
state of this transaction (CREATED, CONFIRMED, …) and the name of the data file.
Since this program can run on different platforms, an according flag (SAPonUNIX,
SAPonNT, etc…) must be set if you want to compile and link this program to your
environment.

See source code for more details.

RFC Library and UNICODE
The Unicode Library is able to communicate with any RFC partner, regardless if the
partner is Unicode or Non Unicode. The fact is, that a Unicode system can
communicate with any system Unicode or ASCII and vice versa.

 SAP RFCSDK Guide 48

 SAP AG

The simplest situation is, if both RFC server and RFC client are homogenous, i.e.,
both are either using Unicode, or non-Unicode systems. In this case the data will be
sent to the RFC server as is, i.e., without any conversion at sender side for character-
like data. The receiver converts the data into its own internal format. This was the
common approach of the RFC library of previous releases.

Another possible situation is, if only one RFC partner is using a Unicode system. In
this case the Unicode system must convert the data into a suitable ASCII data format
(an 1 byte code page) before sending it. The matching codepage will be determined
according to the logon language. For example, if the logon language is Japanese, the
Unicode partner will convert the character-like data into a 8000 codepage before
sending it. This codepage is called communication codepage.

This technique makes it necessary, that the data from a RFC client will be sent per
default in ASCII format (1 byte char size) to the RFC server. If both partners are using
Unicode Systems, the data exchange format will be switched to the homogeneous data
exchange method. The handshake is done during the first call. Sure, this procedure
causes useless overhead in case of Unicode-Unicode communication. To avoid this, it
is possible for a Unicode RFC client, to declare the connection as a connection to a
Unicode system:

• Either via the following entry in the connection string of RfcOpenEx:
‘PCS=2’

• Or via the entry ‘PCS=2’ in the saprfc.ini file for the corresponding destination.

PCS is an abbreviation for Partners Character Size. This value is optional (default is
‘1’).

The restriction of declaring the connection as Unicode connection cause, if the RFC
server is a traditional system (1 byte character size system), the call to fail at server
side with:

• An short dump ‘FORMAT_NOT_SUPPORTED’ in R/3 or

• Return code RFC_INVALID_PROTOCOL in the external RFC program.

A RFC Unicode server determines automatically the partner character format and
sends the answers in the correct format:

• without any conversion if the client is an Unicode program

• or, converted into the client’s codepage if the client is a non-Unicode system.

 There is not any activity required. If a Unicode client opens a connection to a
Unicode server program using the PCS=1 option, the data exchange format will be
switched to a normal (homogeneous) case at first call time. The RFC answer will
already be sent in Unicode format without any conversion. The conversion is than
done by the receiver.

The RFC Library exists in two variations:

• Non-Unicode – a traditional ASCII library. This Library is binary compatible to
further releases. The names for the libraries did not change.

• Unicode – a RFC Library, which uses a SAP-Unicode data type for cha like
data. This is an independent Library and has the postfix ‘u’ in its name. SAP
offers the following Unicode RFC Libraries: NT (librfc32u.dll), UNIX
(librfcu.a and librfccmu.<platform depending extension>.

Every application that uses static libraries must decide, when compiling, which library
it will use. An application using shared libraries can use both libraries simultaneously.
The Unicode and Non Unicode applications are interoperable, i.e., an Unicode RFC

SAP RFCSDK Guide 49

 SAP AG

program can communicate not only with another Unicode RFC application but also
with a non-Unicode RFC application and vice versa.

Special Features for EBCDIC-Based Systems

Customers who are using an OS/400 system and write their own programs in RPG,
COBOL and so on, can include the RFC library in their programs to create an RFC
client. However, they must note the following:

OS/400 programs are usually based on EBCDIC and not on ASCII. After the EBCDIC
character set is made known to the RFC library, the RFC library can automatically
convert the data, but not the metadata of interface functions since the RFC library is
only shipped in ASCII or Unicode. However, there are conversion functions for the
metadata that can convert the different country-specific EBCDIC character sets to
ASCII and vice versa if the SAP code page to be used is specified. Therefore, before
an RFC API can be called, all metadata must be converted from EBCDIC to ASCII
(that is from one corresponding SAP code page to the other one). After the execution
of an RFC function, all returned metadata must be converted from ASCII to EBCDIC.
For this conversion, the ASCII version of the RFC library must be used.

For the conversion from EBCDIC to ASCII, the API RfcConvertE2A is provided; for
the conversion from ASCII to EBCDIC, the API RfcConvertA2E is provided. (These
functions are declared in SAPRFC.H.) The code page you specify should be the code
page of the SAP system (an ASCII code page) and must match the IBM EBCDIC
code page used on the system. For example, the SAP code page 0120 corresponds to
the IBM EBCDIC code page 500 and the corresponding ASCII SAP code page is
1100. In such an environment, you specify 1100 as the code page. Alternatively, you
can specify 0 as the code page; the IBM EBCDIC code page of the job will then be
determined automatically and the corresponding ASCII SAP code page will be used.

If you call RfcOpen and then evaluate the errors, the RPG might look as follows:

**
** Data structure similar to C structure RFC_OPTIONS in saprfc.h
**
D RFCSID S 4A
D RFCCLIENT S 4A
D RFCUSER S 9A
D RFCPASSWORD S 9A
D RFCLANG S 3A

DRFC_OPTIONS DS ALIGN
D DESTINATION * INZ(%ADDR(RFCSID))
D MODE 10I 0 INZ(0)
D CONNOPT * INZ(%ADDR(RFC_CONNOPT))
D CLIENT * INZ(%ADDR(RFCCLIENT))
D USER * INZ(%ADDR(RFCUSER))
D PASSWORD * INZ(%ADDR(RFCPASSWORD))
D LANGUAGE * INZ(%ADDR(RFCLANG))
D TRACE 10I 0 INZ(3)

**
** Data structure similar to C structure RFC_ERROR_INFO in saprfc.h
**
D MSG52 S 52A

DRFC_ERROR_INFO DS ALIGN
D KEY 33A
D STATUS 128A
D MESSAGE 256A

 SAP RFCSDK Guide 50

 SAP AG

D INTSTAT 128A

C 'A46' CAT NULL EBCDICTEXT
C EVAL RC = RfcConvertE2A(RFCSID :
C EBCDICTEXT :
C %SIZE(RFCSID) :
C 3 :
C 0 : Null
terminate
C 1100)
C '000' CAT NULL EBCDICTEXT
Client
C EVAL RC = RfcConvertE2A(RFCCLIENT :
C EBCDICTEXT :
C %SIZE(RFCCLIENT) :
C 3 :
C 0 : Null
terminate
C 1100)
C 'XXXX' CAT NULL EBCDICTEXT User
C EVAL RC = RfcConvertE2A(RFCUSER :
C EBCDICTEXT :
C %SIZE(RFCUSER) :
C 4 :
C 0 : Null
terminate
C 1100)
C 'YYYYYYYY' CAT NULL EBCDICTEXT
Password
C EVAL RC = RfcConvertE2A(RFCPASSWORD :
C EBCDICTEXT :
C %SIZE(RFCPASSWORD) :
C 8 :
C 0 : Null
terminate
C 1100)
C 'E' CAT NULL EBCDICTEXT
Language
C EVAL RC = RfcConvertE2A(RFCLANG :
C EBCDICTEXT :
C %SIZE(RFCLANG) :
C 1 :
C 0 : Null
terminate
C 1100)
C 'as0030' CAT NULL EBCDICTEXT
Hostname
C EVAL RC = RfcConvertE2A(RFCHOSTNAME :
C EBCDICTEXT :
C %SIZE(RFCHOSTNAME) :
C 8 :
C 0 : Null
terminate
C 1100)
C EVAL SYSNR = 48
C 'as0030' CAT NULL EBCDICTEXT
Gateway host
C EVAL RC = RfcConvertE2A(RFCGATEWAYHOST:
C EBCDICTEXT :
C %SIZE(RFCGATEWAYHOST) :
C 8 :
C 0 : Null
terminate
C 1100)
C 'sapgw48' CAT NULL EBCDICTEXT
Gateway service
C EVAL RC = RfcConvertE2A(RFCGATEWAYSRV :

SAP RFCSDK Guide 51

 SAP AG

C EBCDICTEXT :
C %SIZE(RFCGATEWAYSRV) :
C 7 :
C 0 : Null
terminate
C 1100)

** Call C function to open the RFC connection to R/3 and do the error handling
**

C EVAL RFC_Handle = 999
C EVAL RFC_HANDLE = RfcOpen(RFC_OPTIONS)
C RFC_HANDLE IFEQ 0
 * ERROR HANDLING
C EVAL RC = RfcLastError(RFC_ERROR_INFO)
C RC IFEQ 0
C EVAL RC = RfcConvertA2E(MSG52 :
C MESSAGE :
C %SIZE(MSG52) :
C %SIZE(MESSAGE) :
C 64 : fill
space char
C 1100)
C DSPLY MSG52
 * Variable MESSAGE contains error text
C ENDIF
C ENDIF

After the connection has been successfully established, you must make the SAP code
page of the client data known to the RFC library. For example, if a client works with
data in the IBM EBCDIC code page 500, the corresponding SAP code page is '0120'.
The data will then be directly accepted in EBCDIC code page 500 and the results of a
query in the SAP system will be passed on to the client in this code page. The
corresponding code might look as follows:

C EVAL EBCDICTEXT = '0120' + NULL

C EVAL RC = RfcConvertE2A(RFC_CODEPAGE :

C EBCDICTEXT :

C %SIZE(RFC_CODEPAGE) :

C %SIZE(EBCDICTEXT) :

C 0 : Null
terminate

C 1100)

C EVAL RC = RfcSetCodepage (RFC_Handle :

C RFC_CODEPAGE)

 SAP RFCSDK Guide 52

 SAP AG

Writing multithreaded RFC applications
A RFC application can have more than one thread working parallel with RFC. This
enables to create powerful RFC applications. The following issues have to be kept in
mind when developing multithreaded RFC programs:

• Flexibility. The thread safe RFC Library can be used in a single or
multithread environment. No additional API calls are needed for using in a
multithreaded environment.

• Trace mechanism. The trace files will be written per thread.

• Synchronisation. The RFC library implements a model which is quite similar
to the COM+ Thread Neutral Synchronized Components: A RFC handle can be
used in several threads, but can only be active in one thread at a time. A RFC
handle of a RFC connection, created by one thread can be used in another
thread, but these threads have to synchronize the access to this handle. The
RFC library does not protect itself against simultaneous calls from various
threads for the same handle. Therefore the application must be aware that this
simultaneous use of RFC handles should be avoided. The RFC library does not
check whether an RFC call with this handle is still working. The behaviour is
undefined in case of unsynchronised concurrency access from different threads
to the same RFC handle.

• Access synchronisation to internal tables. A handle of an internal table can
also be used in different threads. The access on this handle has to by
synchronized. The behaviour is undefined in case of unsynchronised
concurrency access from different threads to the same table too.

Our suggestions for writing of:

• Multithreaded RFC client program. The main thread or a service thread
waits for work orders. Each work order is then delegated to a worker thread,
which does the respective work. In doing so, a worker thread retains its private
RFC handles, which are opened when necessary (RfcOpenEx) and then closed
again after having been used. In this, each handle remains assigned to a thread
for its entire lifetime. A pool of open RFC handles is kept. When necessary, the
worker threads remove a handle from this pool, use it to do their work and
place it then back in the pool when the work has been completed. While the
worker thread is working with the handle, any other thread does not use the
handle. RFCSDK contains the sample RFC multithreaded client program
rfcthcli.c. This program can be used as basis for new multithreaded RFC
applications.

• Multithreaded RFC server program. Multithread RFC server programs are
normally registered servers. Each thread implements the normal technology of
a simple RFC server program by waiting for the incoming calls in an
RfcWaitForRequest loop and by passing these on to the respective server
function via the RfcDispatch.. RFCSDK contains the sample RFC
multithreaded server program rfcthsrv.c. This program can be used as basis for
new multithreaded RFC applications.

Technical Details

This chapter describes important technical details.

Thread safe library on UNIX platforms

SAP offers a shared RFC library on UNIX platforms, which is thread safe. Depending
on the Unix derivative, this library is called in non-Unicode case:

SAP RFCSDK Guide 53

 SAP AG

• librfccm.so (Alphaosf, Linux, SUN),

• librfccm.sl (HP),

• librfccm.o (AIX)

The Unicode version of the shared RFC library is called:

• librfcum.so (Alphaosf, Linux, SUN),

• librfcum.sl (HP),

• librfcum.o (AIX)

Compiling the SAP-Interface
To compile your applications you must use the same compiler, or a compatible
one, that compiled the SAP-Interface. The sapinfo example application (part
of SDK), called with option -v, gives the compiler version used to compile the
SDK example applications.

The following sections list the commands and options used to compile, link,
and run the example RFC applications in RFCSDK/bin.
Note: Please modify these values as appropriate for your compilation
environment; e.g. the location of the RFCSDK in the listed commands must be
adjusted to your environment; likewise the compiler/linker will probably be
installed elsewhere in your environment.

Non Unicode Make

• Alphaofs DigitalUnix/Tru64, COMPAQ TRU64 4.0F, COMPAQ TRU64 4.0G,
COMPAQ TRU64 5.0A

/bin/cc -std1 -warnprotos -ieee_with_no_inexact -unsigned –
pthread -readonly_strings -DSAPwithTHREADS -DSAPonALPHA -
DSAPonUNIX -c sapinfo.c

cxx -std1 -pthread –rpath .:RFCSDK/lib -o sapinfo sapinfo.o
librfccm.so

• AIX 64

/bin/cc_r -z –q64 -qlanglvl=ansi -qinfo -qarch=com -
spill=1024

-DSAPwithTHREADS -qmaxmem=4096 -O –DNDEBUG -DSAPonRS6000 -c
sapinfo.c

/bin/cc_r -z –q64 -LRFCSDK/lib -L/usr/lib
-o sapinfo sapinfo.o librfccm.o

• AS390 und AS400

SAP provides only the library for these platforms. The RFC SDK does not be assisted.

• HP-Itanium 64

 SAP RFCSDK Guide 54

 SAP AG

cc -DSAPonUNIX -z +DD64 +DSitanium2 -Ae +Olibmerrno
+Oinitcheck +w1 +We281 +W392,829,818,887 +uc -
DSAPwithTHREADS -mt -DSAPonHPPA -DSAPonHPIA64 -c sapinfo.c

/opt/aCC/bin/aCC +DD64 -Wl,+n -lnsl -lpthread -LRFCSDK/lib
-l:librfccm.so -Wl,-a,default -ldld -lsec -o sapinfo
sapinfo.o

• HP-UX 64 (On HP, use the command 'chattr' to adjust the path from which the

shared library is to be loaded):

cc -DSAPonUNIX -z +DD64 -Ae +w1 -DSAPwithTHREADS -
D_REENTRANT

-D_POSIX_C_SOURCE=199506L -DSAPonHPPA -c sapinfo.c

/opt/aCC/bin/aCC +DD64 -Wl,+n -lnsl -Wl,-a,default -
lpthread -ldld -lsec -LRFCSDK/lib -o sapinfo sapinfo.o
librfccm.sl

To compile on a HP 32 bit platform please suppress the compiler option +DD64.

• Linux 32 Linux Intel:

gcc -funsigned-char -Wcast-align -pthread -fPIC -
DSAPwithTHREADS -DSAPonLIN -c sapinfo.c

gcc -funsigned-char -pthread -fPIC –Wl,-rpath,FCSDK/lib
-LRFCSDK/lib -o sapinfo sapinfo.o librfccm.so

• SUN 64 (SOLARIS/SPARC 2.6, SOLARIS/SPARC 7, SOLARIS/SPARC 8):

/opt/SUNWspro/bin/cc -v –xarchh=v9 -xchar=unsigned -
D__XPG4_CHAR_CLASS__

-KPIC -xs -mt -DSAPwithTHREADS -DNDEBUG –DSAPonSUN -O -c
sapinfo.c

/opt/SUNWspro/bin/cc –xarch=v9 -R.:RFCSDK/lib:/opt/SUNWlu62
–KPIC -mt

-ldl -lnsl -lsocket -o sapinfo sapinfo.o librfccm.so

To compile on a SUN 32 bit platform please suppress the compiler option –
xarch=v9.

• NT Intel 32

cl -DBCDASM -Od -Ob1 -Op -Gy -GX -W3 -D_X86_ -DWIN32 -
D_AFXDLL -D_DLL -MD -FR -J -DSAPonNT -c sapinfo.c

link -STACK:0x800000 ole32.lib oleaut32.lib oledb.lib
uuid.lib kernel32.lib advapi32.lib user32.lib gdi32.lib
winspool.lib ws2_32.lib netapi32.lib setargv.obj
comdlg32.lib shell32.lib dbghelp.lib version.lib mpr.lib -
OPT:REF -LARGEADDRESSAWARE -out:sapinfo.exe -
subsystem:console sapinfo.obj librfc32.lib

• NT Itanium 64

SAP RFCSDK Guide 55

 SAP AG

cl -Op -GX -O2 -G2 -Gy -Zi -W3 -Wp64 -DWIN32 -DWIN64 -
D_IA64_ -D_MT -MT -J -DNDEBUG -DPRAGMA_WARNING –c
sapinfo.c

link -STACK:0x200000 ole32.lib oleaut32.lib oledb.lib
uuid.lib kernel32.lib advapi32.lib user32.lib gdi32.lib
winspool.lib ws2_32.lib netapi32.lib setargv.obj
comdlg32.lib shell32.lib dbghelp.lib version.lib mpr.lib -
OPT:REF

-out:sapinfo.exe -subsystem:console sapinfo.obj
librfc32.lib

• NT AMD 64

cl -GX -O2 -GF- -Gy -Zi -W3 -Wp64 -DWIN32 -DWIN64 -D_AMD64_
-D_CRT_NON_CONFORMING_SWPRINTFS -D_MT -MT -J -DNDEBUG -
DPRAGMA_WARNING –c sapinfo.c

link -STACK:0x200000 ole32.lib oleaut32.lib oledb.lib
uuid.lib kernel32.lib advapi32.lib user32.lib gdi32.lib
winspool.lib ws2_32.lib netapi32.lib setargv.obj
comdlg32.lib shell32.lib dbghelp.lib version.lib mpr.lib -
OPT:REF

-out:sapinfo.exe -subsystem:console sapinfo.obj
librfc32.lib

Unicode Make

For compilers that do not support UTF-16 encoded string literals, please use a
modified compile procedure:

1. preprocess your source;

2. run the preprocessed text through an SAP supplied Perl script;

3. compile the resulting text.
See Note 763741 for details on this procedure, the script, and its usage. The note
gives a reference to the UTF-16 string literal standard, which the compiler
manufacturers are implementing.
Currently (2004-10) these compilers, among possibly others, support UTF-16:

• the HP compiler HP C/HP-UX Version B.11.11.06

• Microsoft Windows C/C++ Compilers.

On some platforms the compiler call is prefixed by a call to a procedure setting up
the compile environment. You should remove or modify the latter, depending on
your compilation environment.
Note: when -DSAPwithUNICODE is absent from this command, this description
pertains to the non-Unicode RFCSDK.

When the pre-compilation script is set you must use the modified compile
procedure described above. When this script name is not set the compiler

 SAP RFCSDK Guide 56

 SAP AG

understands UTF-16 literals, or this description pertains to the non-Unicode RFC
SDK, and you can use standard compile procedures.

• Alphaosf

pre-compilation script = u16lit.pl

Compile and link command:
/bin/cc -DSAP_RFC_TIME -c -DSAPwithUNICODE sapinfo.c

cxx -LRFCSDK/lib -lrfcum -lsapu16_mt -lsapucum -o sapinfo
sapinfo.o

Run (environment)
LD_LIBRARY_PATH=RFCSDK/lib

• AIX 64 rs6000_64, as400_pase_64

pre-compilation script = u16lit.pl

Compile and link command:
cc_r -q64 -c -DSAPwithUNICODE -IRFCSDK/include sapinfo.c
xlC_r -q64 -brtl -bnortllib -LRFCSDK/lib librfcum.o
libsapu16_mt.so libsapucum.so –o sapinfo sapinfo.o

Run (environment)
LIBPATH = RFCSDK/lib

• AS390 und AS400

SAP provides only the library on these platforms. The RFC SDK does not be assisted.

• HP-UX 64
• HP-UX Itanium 64

Compile and link command:
cc +DD64 -c -IRFCSDK/include -DSAPwithUNICODE sapinfo.c

/opt/aCC/bin/aCC +DD64 -LRFCSDK/lib -l:librfcum.sl -
l:libsapucum.sl -o sapinfo sapinfo.o

Run (environment)
LD_LIBRARY_PATH = RFCSDK/lib

• Linux 32 linuxintel,
• Linux 64 linuxx86_64, linuxia64, linuxppc64,

SAP RFCSDK Guide 57

pre-compilation script = u16lit.pl

Compile and link command:
gcc –IRFCSDK/include -DSAP_RFC_TIME -c –DSAPwithUNICODE
sapinfo.c

gcc -Wl,-rpath,RFCSDK/lib,-LRFCSDK/lib, -lrfcum, -lsapucum
–o sapinfo sapinfo.o

 SAP AG

Add option –m64 to compile and/or link on 64 bit platforms.

Run (environment)
LD_LIBRARY_PATH=RFCSDK/lib

• Sun 64

pre-compilation script = u16lit.pl

Compile and link command:
/opt/SUNWspro/bin/cc -xarch=v9 -c -DSAPwithUNICODE sapinfo.c

/opt/SUNWspro/bin/CC -xarch=v9 -ldl -lc -LRFCSDK/lib -lrfcum -
lsapu16_mt -lsapucum -o sapinfo sapinfo.o

Run (environment)
LD_LIBRARY_PATH = RFCSDK/lib

• NT Intel 32
• NT AMD 64
• NT Itaninum 64

Compile and link command:
cl -c -MD -IRFCSDK\include -DSAPwithUNICODE sapinfo.c

link ole32.lib oleaut32.lib oledb.lib uuid.lib kernel32.lib
advapi32.lib user32.lib gdi32.lib winspool.lib ws2_32.lib
netapi32.lib setargv.obj comdlg32.lib shell32.lib dbghelp.lib
version.lib mpr.lib secur32.lib /LIBPATH:RFCSDK\lib
librfc32u.lib libsapucum.lib /OUT sapinfo.exe sapinfo.obj

Add library atl21asm.lib to link on NT Itanium 64.
Add library bufferoverflowU.lib to link on NT AMD 64.

Run (environment)
set PATH=%PATH%;RFCSDK\lib

Stack size

The RFC requires at least a 300KB stack.

The following example demonstrates the stack handling when using RFC Library:

#define RFC_MIN_STACK (300 * 1024)
#define OWN_MIN_STACK (64 * 1024)
#define TOTAL_MIN_STACK (RFC_MIN_STACK +

OWN_MIN_STACK)
#ifndef PTHREAD_STACKSIZE_MIN // sometimes missing
#define PTHREAD_STACKSIZE_MIN RFC_MIN_STACK
#endif

...
pthread_attr_init(&thr_attr);
//set threads attributes such as PTHREAD
//PTHREAD_CREATE_JOINABLE or other

 SAP RFCSDK Guide 58

 SAP AG

{
/* and now make sure that we have enough stack space

 * some defaults are too small */
 size_t stack_size, min_size;

 rc = pthread_attr_getstacksize(&thr_attr,

&stack_size);
 if (0 != rc)
 {
 printf("cannot get threads stacksize\n");
 exit(1);
 }

min_size = PTHREAD_STACKSIZE_MIN;

if (min_size <= TOTAL_MIN_STACK)
 {
min_size = TOTAL_MIN_STACK;
 }

if (stack_size < min_size)
 {
 int page_size;

 page_size = (int) sysconf(_SC_PAGESIZE);
 min_size = ((min_size / page_size) + 1) *

page_size;

 printf("adjusting stack size from %d to

%d\n",
 stack_size, min_size);

 rc = pthread_attr_setstacksize(&thr_attr,

min_size);
 if (0 != rc)
 {
 printf ("cannot set threads stacksize\n");
 exit(1);
 }

}
}

Initialization

You must initialise the library using RfcInit API. RfcInit must return before the
application continues with any other API call.

The following example demonstrates the correct initialisation:

SAP RFCSDK Guide 59

 SAP AG

static pthread_once_t initialize_rfc_once =
PTHREAD_ONCE_INIT;

int main(int argc, char** argv)

 {

 (void) pthread_once (&initialize_rfc_once,
RfcInit);

 ...

 }

Closing RFC connection in multithreaded environment

Because RFC handles can only be active in one thread at a time, the RFC handles
have to be closed individually. You should NEVER call RfcClose
(RFC_HANDLE_NULL) in an multi thread application.

Restrictions

Due to the development of multithreaded rfc applications, please notice the following
restrictions:

• No support for load balancing via SNC at this time.

• RFC is not cancel safe. If a thread, which executes an RFC call, is cancelled, a
memory leak or deadlock may occur. After returning from an RFC-API call, the
worker threads can check whether they must be cancelled. This may be the case
after an RfcWaitForRequest or RfcCallReceiveEx or RfcReceiveEx. With
RfcClose or RfcAbort, you can release the RFC handle and cancel the thread.

• RFC is not "fork safe".

The saprfc.ini file
The RFC application can read the saprfc.ini file to determine the RFC parameters
needed to establish an RFC connection.

The saprfc.ini file has to be in the working directory of the external RFC program or
its location could be defined by the environment variable RFC_INI. The content of
RFC_INI could be either the full path or only the directory path of the sapRFC.ini file.
Both entries for the same sapRFC.ini are correct:

 RFC_INI = d:\RFCenvironment\sapRFC.ini

 RFC_INI = d:\RFCenvironment

The advantage of this file is, that all specific RFC parameters known at this time (load
balancing, ABAP-Debug, RFC with SAPGUI) ,and in the future, can be used without
changes to RFC programs

To use this file, RFC client programs must call the RfcOpenEx with the option
DEST=<destination> in their connection string and the destination must point to the
corresponding entry in the saprfc.ini file

To use this file, RFC server programs must call the RfcAccept with -D<destination>
as parameter and the destination must point to the corresponding entry of type ‘R’ in
the saprfc.ini file.

 SAP RFCSDK Guide 60

 SAP AG

If working with Load Balancing, and there is no info about MSHOST, the RFC library
will try to get this host name from the sapmsg.ini customized for SAPLOGON on
Windows platforms. Usually, these files are installed in the Windows directory. You
can also copy these files in a directory, which is specified by the environment
'RFC_LOGON_INI_PATH'. On NON-Windows platforms, you can work with this
environment variable or copy these files in your working directory.

The SAP-Router string must be defined in the R/3 system name:

• R3NAME = /H/sapgate1/S/3297/LOI, where LOI is the R/3 name

• R3NAME = "/SAP America/LOI", where 'SAP America' is the router name
defined in 'saproute.ini' for SAPLOGON to Windows.

There are 5 connection types available:

• Type B is recommended to connect to a R/3 system (using Load Balancing).

• Type A is only to be used if you want to connect to a specific application
server.

• Type E is for RFC client program working with another external program as
RFC server program.

• Type R is for RFC server programs or for a client program working with
another external program as RFC server program, which is already registered at
a SAP gateway.

• Type 2 is only for connecting to a R/2 system.

 Type ’R’ entries

Register a RFC server at a SAP gateway and wait for RFC calls by a R/2 or R/3
system or establish a connection from an RFC client to an external program, which is
already registered at a SAP gateway.

The following parameters can be used:

DEST=<destination in RfcAccept or RfcOpenEx>

TYPE=<R: Register at SAP-GW or connect to reg. program>

PROGID=<Program ID, optional, default: destination>

GWHOST=<Host name of the SAP gateway>

GWSERV=<Service name of the SAP gateway>

RFC_TRACE=<0/1: OFF/ON, optional, default: 0 (OFF)>

SNC_MODE=<0/1: OFF/ON, optional, default: 0 (OFF)>

SNC_QOP=<1/2/3/8/9, optional, default: 8>

SNC_MYNAME=<Own SNC name, optional>

SNC_PARTNERNAME=<Partner SNC name>

SNC_LIB=<Path and file name of the SNC library>

Please note:

• The host name and service name of the SAP gateway must be defined in the
'hosts' and 'service' files.

• If SNC_MODE is ON, the SNC_LIB must be defined. SNC_MYNAME and
SNC_QOP are optional.

• SNC_PARTNERNAME is only needed for an RFC client.
SAP RFCSDK Guide 61

 SAP AG

Type ’B’ entries

Connect to a R/3 system via the Load Balancing feature of a R/3 system.

The following parameters can be used:

DEST=<destination in RfcOpenEx>

TYPE=<B: use the load balancing feature

R3NAME=<Name of R/3 system, optional default: destination>

MSHOST=<Host name of the message server>

GROUP=<Application servers group name, optional, default ‘PUBLIC’>

RFC_TRACE=<0/1: OFF/ON, optional, default: 0 (OFF

ABAP_DEBUG=<0/1: OFF/ON, optional, default: 0 (OFF)>

USE_SAPGUI=<0/1/2: OFF/ON/INVISIBLE_SAPGUI after each RFC-Function,
def.: 0 (OFF)>

SNC_MODE=<0/1: OFF/ON, optional, default: 0 (OFF

SNC_QOP=<1/2/3/8/9, optional, default: 8>

SNC_MYNAME=<Own SNC name, optional>

SNC_PARTNERNAME=<SNC name of the message server>

SNC_LIB=<Path and file name of the SNC library>

Please note:

• The host name and service name of the message must be defined in the 'hosts'
and 'service' files: (<service name> = sapms<R/3 system name>).

• If SNC_MODE is ON the SNC_LIB must be defined.

Type ‘A’ entries

Connect to a specific R/3 application server.

Following parameters can be used:

DEST=<destination in RfcOpenEx>

TYPE=<A: RFC server is a specific R/3 application Server>

ASHOST=<Host name of a specific R/3 application Server>

SYSNR=<R/3 system number>

GWHOST=<optional, default: gateway on application Server>

GWSERV=<optional, default: gateway on application Server>

RFC_TRACE=<0/1: OFF/ON, optional, default: 0 (OFF)>

ABAP_DEBUG=<0/1: OFF/ON, optional, default: 0 (OFF)>

USE_SAPGUI=<0/1/2: OFF/ON/INVISIBLE_SAPGUI each RFC-Function,
def.: 0 (OFF)>

SNC_MODE=<0/1: OFF/ON, optional, default: 0 (OFF

SNC_QOP=<1/2/3/8/9, optional, default: 8

SNC_MYNAME=<Own SNC name, optional

SNC_PARTNERNAME=<Partner SNC name>

SNC_LIB=<Path and file name of the SNC library>

 SAP RFCSDK Guide 62

 SAP AG

Please notice:

• The host name and service name of the application server must be defined
under 'hosts' and 'service' (<service name> = sapdp<R/3 system number>).

• The host name and service name of the SAP gateway must be defined in the
'hosts' and 'service' files.

• If you don't define GWHOST and GWSERV in this entry, the service name of
the SAP gateway still needs to be defined in the 'service' file: (<service name>
= sapgw<R/3 system number.

• If SNC_MODE is ON the SNC_LIB must be defined.

 Type ‘2’ entries

Connect to a R/2 system.

The following parameters can be used:

DEST=<destination in RfcOpenEx and in sideinfo file for gateway

TYPE=<2: RFC server is a R/2 system

GWHOST=<Host name of the SAP gateway>

GWSERV=<Service name of the SAP gateway

RFC_TRACE=<0/1: OFF/ON, optional, default: 0 (OFF

SNC_MODE=<0/1: OFF/ON, optional, default: 0 (OFF

SNC_QOP=<1/2/3/8/9, optional, default: 8>

SNC_MYNAME=<Own SNC name, optional>

SNC_PARTNERNAME=<SNC Partner Name>

SNC_LIB=<Path and file name of the SNC library>

Please notice:

• The host name and service name of the SAP gateway must be defined in the
'hosts' and 'service' files.

• SNC for RFC connections to R/2 is not supported.

Type ’E’ entries

Connect to an external RFC server program, which will be started by the SAP
gateway.

The following parameters can be used:

DEST=<destination in RfcOpenEx>

TYPE=<E: Server program will be started by SAP gateway>

GWHOST=<Host name of the SAP gateway>

GWSERV=<Service name of the SAP gateway>

TPHOST=<Host name of the server program>

SAP RFCSDK Guide 63

 SAP AG

TPNAME=<Path name and server program name>

RFC_TRACE=<0/1: OFF/ON, optional, default: 0 (OFF)>

SNC_MODE=<0/1: OFF/ON, optional, default: 0 (OFF)>

SNC_QOP=<1/2/3/8/9, optional, default: 8>

SNC_MYNAME=<Own SNC name, optional>

SNC_PARTNERNAME=<Partner SNC name>

SNC_LIB=<Path and file name of the SNC library>

Please notice:

• The host name and service name of the SAP gateway must be defined in the
'hosts' and 'service' files.

• If SNC_MODE is ON, the SNC_LIB must be defined.

• After being started by the SAP gateway, the program will run with the SNC
library defined for the respective SAP gateway.

RFC tracing mechanism
The RFC tracing mechanism provides the opportunity to analyze RFC error situations
and helps to find a few bugs, which have not been explored yet. The trace file(s) will
be written

• either to the RFC working directory,

• or to the directory defined by the environment variable RFC_TRACE_DIR.

If one RFC partner turns trace on, every RFC partner for this RFC tree turns on the
trace.

The simplest way to turn RFC trace on, is to set the environment variable
RFC_TRACE=1. In this case all RFC connections will be traced.

To turn the RFC trace on for only one client, the connection string of the RFC
connection should contain the following entry: “… TRACE=1 …”. Another
possibility with the same effect is to insert the following entry into the saprfc.ini file
for the corresponding destination: RFC_TRACE=1.

 SAP RFCSDK Guide 64

 SAP AG

RFC and SAP-Router
SAP-Router is a SAP-Software product acts like a firewall by regulating access
to/from your network. See SAP Note 30289 for more detail about SAP-Router.

General one or more SAP-Routers could be involved into communication chain.

RFC-Client Program and SAP-Router

Any RFC client program can connect to a SAP system via SAP-Router. The feature
RFC with SAPGUI is also possible via Sap-Router. One or more SAP-Routers could
be involved to communication chain. The RFC library has to be informed about all
used SAP-Routers via parameter about hostname in RfcOpenEx-API.

Figure 0-1

Using Load Balancing

The host name of the message server must contain the route string. For the above
example (see Figure 0-1), the RFC client must set the name of the message server as
following: /H/host_r1/H/host_r2/H/host_21.

The permission table of saprouter on host_r2 in Neework_2 has to contain following
entries:

P host_r1 host_21 sapms <R3name>

P host_r1 <R/3-ashost 1> sapgw <R/3 system number>

…

P host_r1 <R/3-ashost n> sapgw <R/3 system number>

SAP RFCSDK Guide 65

 SAP AG

Connection to an explicit application host using default gateway

The hostname of specified application host must contain the router string. For the
example above, the RFC client should set the host name of the application server as
following: /H/host_r1/H/host_r2/H/host_23.

The permission table of saprouter on host_r2 in Network_2 has to contain following
entry:

P host_r1 host_22 sapgw <R/3 system number>

Connection to an explicit application server using explicit gateway

If working with an explicit SAP gateway the host name of SAP gateway must contain
the route string. The hostname may not contain the route string. For the example
above, the RFC client must set the host name of application sever and host name of
SAP gateway for connection data as following:

GW-Host: /H/host_r1/H/host_r2/H/host_22

AS-HOST: host23

The route permissions table must contain following entry:

P host_r1 host_22 sapgw<GW service number>

RFC Server and SAP-Router

SAP-Router feature is available for following kinds of external RFC servers:

• Registered RFC server

• Server started by Sap gateway

• Server started by SAPGUI

An RFC server started directly by application server runs on the same machine as the
application server. In this case SAP-Router is not involved in the communication
chain.

Due to the kind of RFC server there are different ways how an external server works
in an SAP-Router environment.

Registered RFC server and SAP-Router

The hostname of SAP gateway must contain the router string. For the example shown
in the Figure 0-1 the gateway host should be defined as following:
/H/host_r1/H/host_r2/H/host_21.

The RFC server program should be registered at the SAP gateway with following
options:
srfcserv –a<Prog.ID> -g/H/host_r1/H/host_r2/H/host_21 –x
sapgw<GW service number>.

 SAP RFCSDK Guide 66

 SAP AG

Figure 0-1

The route permission table of SAP-Router on host_r1 in the Network_1 must contain
following entry:

 P host_11 host_r2 3299

The route permission table of SAP-Router on host_r2 in the Network_2 must contain
following entry:

 P host_r1 host_21 sapgw<GW service number>

The corresponding destination in SM59 should be defined as following:

Connection type: T

Activate type: Registering

Program ID: <Prog.ID>

Gateway host: host_21

Gateway Service: sapgw<GW service number>

RFC server started by a SAP gateway

Due an SAP gateway cannot start an RFC server program with remote shell on
another machine over SAP-Router it is necessary to install an SAP gateway on a
machine in the network where the external RFC server program will run. For better
performance both should run on the same computer.

Following example (see Figure 0-2) demonstrates two different networks with two
SAP-Routers and how an RFC program can be started by an SAP gateway.

Destination for RFC server in SM59 should be defined as following:

Connection Type: T

Activate Type: Start on explicit host

Program: ../rfcsdk/bin/srfcserv

Target host: host_11

SAP RFCSDK Guide 67

 SAP AG

Gateway host: /H/host_r2/H/host_r1/H/host_11

Gateway service: sapgw<GW service number>

The route permission table of SAP-Router on host_r1 in Network_1 should contain
following entry:

 P host_r2 host_11 sapgw<GW service number>

The route permission table of SAP-Router on host_r2 in Network_2 should contain
following entry:

 P host_21 host_r1 3299

Figure 0-2

RFC server started by SAPGUI

Following example (see Figure 0-3) shows two different networks with two SAP-
Routers and how current running SAPGUI can start an RFC server program.

A destination in SM59 should be defined as following:

Connection Type: T

Activate Type: Started by front end

Program: ../rfcsdk/srfcserv

The route Permission table on host_r1 in Network_1 must contain following entry:

P host_11 host_r2 3299

 SAP RFCSDK Guide 68

 SAP AG

The route Permission table on host_r2 in Network_2 must contain following entries:

#entry for SAPGUI

P host_r1 host_21 sapdp<R/3 system number>

#entry for RFC server program

P host_r1 host_21 sapgw<R/3 system number>

Figure 0-3

SAP RFCSDK Guide 69

 SAP AG

Used environment variables
The environment will be read at process start only. If you change any environment
variable, you have to restart your RFC application.

Table 1: Most used environment variables

Name Description Default value
RFC_TRACE Trace all RFC connections 0

RFC_TRACE_DIR Defines location for RFC
trace files. Working directory

RFC_TRACE_DUMP
Full hex dump of the data at
the API level (only active if
RFC_TRACE is also set).

0

RFC_TRACE_ITAB Trace the ITAB functions 0

RFC_MAX_TRACE The maximal size (in
megabytes) of trace files. 8 MB

RFC_DEBUG Enter debugging mode for
every R/3 connection 0

RFC_INI Location of the saprfc.ini
file.

Working
directory.

RFC_NO_COMPRESS The data compression for
tables is off. 0

RFC_WAN_THRESHOLD

Threshold for wan
connections. If an connection
is established over WAN
(flag in RfcOpenEx is set) all
tables bigger that 251 bytes
will be compressed for
sending. This value increases
the threshold.

251

RFC_MAX_REG_IDLE

The connection between an
registered server, which waits
for incoming calls in
RfcDispatch or
RfcWaitForRequest API, and
the SAP Gateway will be
checked in every 300 seconds
by the RFC Library
automatically. This variable
enables to change this
timeout.

300 seconds (5
Minutes)

RFC_SAFE_MODE

Lets RFC library call
RfcHealthCheck API
automatically. This will be
done by almost every RFC
call. This call enables to
check memory consistence at
runtime.

0

PATH_TO_CODEPAGE
Defines the location of
mapping tables needed for
codepage conversion.

 SAP RFCSDK Guide 70

 SAP AG

CPIC_MAX_CONV
Defines the maximum
number of active RFC
connections at a time

100

CPIC_TRACE

Activates CPIC trace.
Possible values:

1-minimal information

2-medium

3-full information content

0

CPIC_TRACE_DIR Defines the location of CPIC
trace files Working directory

RFC_TRACE_NO_HEX_DUMP

Defines maximal number of
bytes, which will be dumped
into rfc trace file.

This may help to reduce the
volume of the rfc trace file.

Full hex dump

RFC_LG_TIMEOUT
Defines the timeout for the
connection to the message
server in case of load
balancing connections.

10 Seconds

Following environment variables are active by the RFC Library only on Microsoft
Windows platforms:

RFC_LOGON_INI_PATH: Location of sapmsg.ini and saproute.ini files. Default is
the Windows directory.

SAP RFCSDK Guide 71

	Icons in Body Text
	Typographic Conventions
	Introduction
	Basic knowledge
	RFC Client Program
	Open a RFC-Connection
	Connection to a R/3 System
	Connection to an explicit application server (Connection typ
	Load balancing feature (Connection type B)
	Logon data

	Connection to an external RFC program
	Connection to an external program started by a SAP gateway
	Connection to a registered RFC server

	Call a RFC function
	Blocking RFC Calls
	Unblocking RFC Calls
	The RFC call-back mechanism for the client

	RFC with SAPGUI
	RFC using ABAP debugger
	Close a RFC connection

	RFC Server Program
	Accept a server connection
	Registered RFC server
	Started RFC server

	Performing a RFC function
	Dispatching of RFC calls by the RFC Library
	Example RFC server working only with RfcDispatch
	Example RFC server working with RfcListen and RfcDispatch

	Dispatching of RFC calls by the RFC application
	Performing a RFC function, data exchange and RFC exceptions
	RFC call back mechanism for RFC server

	Closing and aborting of accepted connections

	RFC Data Model
	Elementary data types
	Arithmetical data types
	Character-like data types
	Strings
	Character Strings
	Raw strings or XStrings

	Raw data

	Structured data
	Early bound scenario
	Late bound scenario
	UNICODE Programs

	Tables

	Transactional RFC
	Transactional RFC between R/3 Systems
	Transactional RFC between R/3 and External Systems
	Transactional RFC Client Program
	Obsolete tRFC API
	Current tRFC API
	The Sample Test Program ‘trfctest.c’

	Transactional RFC Server Program
	Implementation rules
	Technical description (Within R/3 System)
	Sequence diagram
	The Sample Test Program ‘trfcserv.c’

	RFC Library and UNICODE
	Special Features for EBCDIC-Based Systems
	Writing multithreaded RFC applications
	Technical Details
	Thread safe library on UNIX platforms
	Compiling the SAP-Interface
	Non Unicode Make
	Stack size
	Initialization
	Closing RFC connection in multithreaded environment

	Restrictions

	The saprfc.ini file
	Type ’R’ entries
	Type ’B’ entries
	Type ‘A’ entries
	Type ‘2’ entries
	Type ’E’ entries

	RFC tracing mechanism
	RFC and SAP-Router
	RFC-Client Program and SAP-Router
	Using Load Balancing
	Connection to an explicit application host using default gat
	Connection to an explicit application server using explicit

	RFC Server and SAP-Router
	Registered RFC server and SAP-Router
	RFC server started by a SAP gateway
	RFC server started by SAPGUI

	Used environment variables

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

